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Abstract. Due to the many advantages of Fiber Reinforced Polymer (FRP) decks, such
as lightweight and high strength, recently, using FRP decks as building deck panels is
considered an alternative choice to traditional decks. Accordingly, there is an increasing
need for an analysis tool for engineering and academic applications. Finite element is an
accurate and reliable method for analyzing FRP decks. However, high computational cost
and modeling di�culty somewhat limit its application. To overcome this shortcoming, this
study presents an integrated, easy-to-use, computationally-e�cient, and yet rather accurate
analysis method for FRP decks. This integrated method was implemented in a computer
code and can be easily used to analyze building FRP deck panels. To evaluate the deck's
applicability as a building oor panel system, some requirements are needed to be met,
including maximum allowable elastic deection, local stability of components, vibration
frequency, and ductility of the ooring system. The proposed method uses the Rayleigh-
Ritz method to calculate these requirements. Using three di�erent FRP deck examples, it
was shown that the proposed method is generic and capable of analyzing various forms of
the FRP deck panels, including all-FRP and hybrid decks made of two or more di�erent
materials.
© 2024 Sharif University of Technology. All rights reserved.

1. Introduction

Fiber Reinforced Polymers (FRPs) in form of com-
posite structures have found many applications in the
construction industry because of their special charac-
teristics such as high speci�c strength and modulus,
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high corrosion resistance, and low thermal conduc-
tivity [1]. One of their applications is in panelized
construction such as bridge decks made from FRPs [2].
Yang and Sebastian [3] measured the deection of
an all-FRP pultruded Glass Fiber Reinforced Polymer
(GFRP) bridge deck under tire loading. Gopinath et
al. [4] proposed all-FRP deck panels using hybrid
glass and jute �bers and compared the deection of
several cross-sections. Xin et al. [5] optimized an
all-FRP bridge deck on steel girders. The objective
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of the optimization was to maximize the bridge span
and minimize the construction cost. Sa et al. [6]
assessed the transverse bending and in-plane shear an
all-GFRP pultruded bridge deck panels. They showed
that the deck exhibited reliable and consistent exural
and shear behavior. Wang et al. [7] proposed and
optimized an all-GFRP bridge deck panel on GFRP
girders and showed that the proposed bridge panel
meets the requirements of the design codes. Sun et
al. [8] studied the web local buckling of all-GFRP
bridge deck panels as one of the major failure modes.
They investigated the inuential parameters on local
web buckling and failure modes under concentrated
load. Park et al. [9] studied the behavior of adhesive
joints in all-GFRP bridge deck panels. They checked
the behavior of the joints at the serviceability and
ultimate limit states.

Recently using FRP decks in building ooring
systems drew researchers' attention. Gao et al. [10]
proposed a Carbon Fiber Reinforced Polymer (CFRP)
deck for application in building structures. Awad et
al. [11] proposed a GFRP sandwich panel which is
made of modi�ed phenolic core and E-CR glass skins
for the ooring system. Satasivam et al. [12,13]
investigated modular web-ange FRP-steel composite
systems fabricated of adhesively bonded pultruded
pro�le sandwiched between two at panels. Using
composite FRP decks in building ooring systems
yields a lighter and more resilient structures [14].

Although the FRPs exhibit superior properties
in comparison to ordinary structural materials, there
are some weak points that their inuence should be
mitigated, including their low ductility and relatively
lower sti�ness in some directions. To overcome these
de�ciencies, the idea of using hybrid FRP composite
materials in decks has been proposed [15]. In hybrid
FRP composites, two (or more) di�erent materials
are used to improve the mechanical properties. Ji et
al. [16] investigated the static and fatigue behavior of
the hybrid steel-FRP bridge deck. They proposed a
deck with upper and lower GFRP facings and hybrid
core of GFRP grid and multiple steel box cells and it
is revealed that this deck exhibit certain improvements
in comparison to the common all-FRP bridge decks.
Lombardi and Liu [17] studied the elastic properties of
a GFRP bridge deck and tried to increase the sti�ness
of the deck by embedding steel in its cross-section. The
e�ect of using steel tubes in the core and embedding
steel plates in the facesheet was also investigated by
Lombardi and Liu [17]. The results indicated that
using the hybrid system has increased the shear and
exural sti�ness of the deck. There is other research
devoted to experimental and numerical investigation of
the hybrid composite deck made of concrete, steel, and
FRP [18,19]. Kim and Lee [20] proposed and tested
a hybrid steel-GFRP deck panel under monotonic

and fatigue loads. They embedded steel wires into
pultruded GFRP pro�les and showed that this technic
improved the behavior of the deck. Zou et al. [21]
studied the shear behavior of a hybrid concrete-FRP
deck panel and proposed design equations to predict its
shear capacity. Pournasiri et al. [22] proposed a hybrid
concrete-GFRP bridge deck panel. They investigated
the inuence of the con�guration of the cross-section
and concrete strength on the load-carrying capacity of
the deck behavior. These research works concluded
that the proposed hybrid steel-concrete-FRP deck is
light and reliable. As a result, it is an appropriate
choice for modular construction.

Several analytical methods are proposed to inves-
tigate FRP decks' behavior [23]. Barbero et al. [24]
introduced a method to analyze an FRP deck/stringer
bridge system. Kim and Lee [25] proposed an analytical
model to investigate the exural response of an FRP
deck. Aref et al. [26] proposed a procedure, which is
based on transformed plate formulation and the Ritz
method, to analyze a skew FRP bridge deck with a
parallel grid core. Xin et al. [27] conducted experimen-
tal, analytical, and numerical research on the exural
behavior of GFRP pultruded composite pro�les for
designing bridge decks. Satasivam et al. [28] presented
an analytical approach for evaluation of the exural
behavior of modular GFRP sandwich assembly for two-
way slab applications in which they used a symmetrical
grillage model to simplify the aforementioned two-way
slab as four beam members.

A brief overview of this paper is presented as fol-
lows: In x 2 the proposed analysis method is explained.
In x 3, three comprehensive examples, including a
sandwich panel, an all-FRP deck, and a hybrid steel-
FRP are analyzed to check the applicability of the
proposed analysis framework. Finally, conclusions are
given in x 4.

2. Analysis and design procedure

There are four major steps in the delineated framework
for the analysis and design of hybrid decks. These steps
are described in detail in the following subsections.

2.1. Equivalent orthotropic plate
In order to reach the properties of deck equivalent
plate, based on Zhou [29] two steps are designed. In
the �rst step, the core of the deck is modeled as a plate
with the same thickness as core thickness. This plate
is denoted as a core equivalent plate. In the second
step, the core equivalent plate and two facesheets are
considered to form a sandwich plate. Finally, the deck
equivalent plate properties are obtained by setting a
sandwich plate equal to a single orthotropic plate. The
properties of the deck equivalent plate that have been
calculated in the previous steps are used in computing
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deck deformation. The plate sti�ness parameters are
de�ned as follows:

Dx =
IxEx
L

; Dy =
IyEy
L

; Dxy = �xyDy; (1)

in which L is the width of the deck. Parameters Ix, Ex,
andDx are the moment of inertia, modulus of elasticity,
and sti�ness of plate in the x direction, respectively. It
should be noted that x, y, and z-axes are along the
length, width, and thickness of the deck, respectively.
Parameter Dy is the sti�ness of the plate in the y
direction and Dxy is the sti�ness of the plate in the
xy plane. Parameter �xy is the axial in-plane Poisson's
ratio. By using the above properties, the equivalent
modulus of elasticity in x and y directions, in the case
of core equivalent plate, are given as:

Eex =
12Dx(1� �xy�yx)

H3
C

; (2)

Eey =
12Dy(1� �xy�yx)

H3
C

; (3)

in whichHC is the thickness of the core equivalent plate
and �yx is the transverse in-plane Poisson's ratio and
is de�ned as:

�yx =
Dy

Dx
�xy: (4)

In the second step, the sandwich plate, which is
consisted of two facesheets and a core equivalent plate
is modeled by an equivalent orthotropic plate. Deck
equivalent plate properties are calculated in terms
of facesheets and core equivalent plate properties as
follows:

Ex = �CEex + �TEfx + �BEfx ; (5)

Ey = �CEey + �TEfy + �BEfy ; (6)

in which Efx and Efy are the moduli of elasticity
of the facesheets in x and y directions, respectively.
Parameters �C , �T , and �B are de�ned as:

�C =
HC

H
; �T =

HT

H
; �B =

HB

H
; (7)

in which HT , HB , and H denote the thickness of top
facesheet, bottom facesheet, and deck equivalent plate,
respectively. The shear moduli of deck equivalent plate
in xy, xz, and yz plane are written as follows:

Gxy = �CGexy + �TGfxy + �BGfxy; (8)

Gxz =
�
�C
Gexz

+
�T
Gfxz

+
�B
Gfxz

��1

; (9)

Gyz = (
�C
Geyz

+
�T
Gfyz

+
�B
Gfyz

)�1; (10)

in which Gfxy, Gfxz, and Gfyz are the shear moduli
of facesheets in xy, xz, and yz plane, respectively.
Parameters Gexy, Gexz, and Geyz are the shear moduli
of core equivalent plate in xy, xz, and yz plane,
respectively. The shear modulus of the core equivalent
plate can be calculated as:

Gexz =

nP
j=1

GjxzAj

AP
; (11)

in which Aj is the area of jth component, which
contributes to the shear sti�ness in xz plane, and n is
the number of these components. Parameter AP is the
cross-sectional area of the core equivalent plate which
is perpendicular to x axis. Similarly, Gexy and Geyz can
be calculated. It should be noted that, in the case of
calculation of Gexy and Geyz, AP is the area of a section
of the core equivalent plate that is perpendicular to z
and y axes, respectively.

2.2. Elastic deformation analysis
Calculation of the elastic deformation of a deck panel
subjected to service load is an important part of the
design and analysis process. Therefore, in this section,
the procedure of calculation of elastic deection of the
deck is presented. In this study, the frameworks of
both the Classical Lamination Plate Theory (CLPT)
and First-order Shear Deformation Theory (FSDT) are
implemented to calculate elastic deformation of the
deck [30]. The displacement �eld (u,v,w) in CLPT is
written as:8><>:u(x; y; z) = u0(x; y)� z[@w0

@x ];
v(x; y; z) = v0(x; y)� z[@w0

@y ];
w(x; y; z) = w0(x; y);

(12)

in which u0(x; y) and v0(x; y) are midplane displace-
ments in x and y directions, respectively. In the case
of calculation of the transverse deection of symmetric
laminates, these terms can be neglected. Parameter
w0 is the transverse displacement of the midplane in
z direction. According to FSDT, a transverse plane
that is normal to the midplane will not remain normal
after deformation. The governing di�erential equations
of symmetric laminates form a set of �ve simultaneous
coupled equations. The generalized displacement �eld
is de�ned as [31]:8><>:u(x; y; z) = u0(x; y) + z x;

v(x; y; z) = v0(x; y) + z y;
w(x; y; z) = w0(x; y);

(13)

in which  x = @u(x;y;z)
@z and  y = @v(x;y;z)

@z are rotations
of a transverse normal about y and x axes, respectively.
The dimensions of the deck in x and y directions are a
and b, respectively. The imposed boundary conditions
on the equivalent plate are:
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x = 0; a)
8><>:Mx � �D22

@2w
@x2 jx=0;a = �k� @w@x jx=0;a;

w = 0;
 y = 0; (14)

y = 0; b)

8>>>><>>>>:
My = D12

@2w
@x2 +D22

@2w
@y2

+2D26
@2w
@x@y = 0;

Vy = D22
@3w
@y3 + 4D26

@3w
@x@y2

+(4D66 +D12) @3w
@y@x2 = 0:

(15)

2.2.1. Shape functions
The �rst step to apply the Rayleigh-Ritz method is
the selection of appropriate shape functions that can
satisfy essential boundary conditions. Proper shape
functions are generated by using the Gram-Schmidt
process which generates orthonormal polynomials. Ku-
mar et al. [32] presented this procedure for various
boundary conditions. Orthonormal polynomial �j(�; �)
is generated on the domains 0 � � � 1 and 0 � � � 1.
Vector @ is de�ned as:

@=
�
1 � � �2 �� �2 �3 �2� ��2 �3� :(16)

The jth element of the vector is shown as @j . The
shape functions are generated based on the boundary
conditions by de�ning function R as follows:

R = �l(1� �)m�n(1� �)p: (17)

The values of l, m, n, and p depend on boundary
conditions on � = 0; 1 and � = 0; 1, respectively
and they can be denoted as 0, 1 and 2 for free,
simply supported and clamped boundary conditions,
respectively. Function }j is de�ned as:

}j = < @j ; j = 1; 2; 3; : : : : (18)

�j is the jth polynomial shape function and calculated
as:

�1 = }1; (19)

�j = }j �
j�1X
i=1

%ji�i; (20)

in which:

%ji =
h}j ; �ii
h�i; �ii ;

i = 1; 2; 3; :::; (j � 1); j = 2; 3; 4; :::; N; (21)

where h�i;�ji is the inner product of �i;�j and is
de�ned as follows:

h�i;�ji =
Z 1

0

Z 1

0
�i(�; �)�j(�; �)d�d�; (22)

and the norm of k�jk is written as:

k�jk=h�j ; �ji 1
2 =
�Z 1

0

Z 1

0
�j(�; �)�j(�; �)d�d�

� 1
2

: (23)

The �nal form of the orthonormal polynomial is
written as:

�̂j =
�j
k�jk : (24)

The generated shape functions are given in
Appendix A.

2.2.2. Energy terms
The strain energy of the equivalent plate consists of
three terms. The �rst term is strain energy due to the
stretching of the mid-plane surface of the equivalent
plate and can be calculated from:

VS =
1
2

Z
f"gT [A]f"gdA; (25)

in which f"g has the following de�nition:

f"g =
�
@u
@x

@v
@y

@u
@y

+
@v
@x

�T
: (26)

The second term is strain energy due to bending-
stretching coupling. The structure of the deck and its
equivalent plate in many practical cases are symmetric.
Therefore, strain energy due to bending-stretching
coupling is negligible. The last term that contributes
to strain energy is the strain energy due to bending.
The bending strain energy is expressed as:

VB =
1
2

Z
f�̂gT [D]f�̂gdA; (27)

in which f�̂g is the curvature and is de�ned as follows:

f�̂g =
�
�@2w
@x2 � @2w

@y2 � @2w
@x@y

�T
: (28)

In order to formulate the strain energy in non-
dimensional form, the following non-dimensional pa-
rameters are de�ned [33].

� =
a
b
; � =

a
H
; D0 =

E0H3

12(1� �12�21)
;

dij =
Dij

D0
; � =

x
a
; � =

y
b
;

bk� =
ak�
D0

; aij =
a2

D0
Aij ; (29)

in which a and b are the dimensions in x and y
directions of the rectangular plate and � is the plate
aspect ratio. Parameters Dij � s and Aij � s are
the elements of the D and A matrices, respectively.
Parameter k� is the sti�ness of the rotational springs
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that are located along the edges of the deck equivalent
plate. The non-dimensional form of the deection is
ŵ = w

H . In order to implement the Rayleigh-Ritz
method, rotations and displacement are de�ned in the
following series representation:8>>>>>>><>>>>>>>:

ŵ(�; �) =
NP
j=1

�j(�; �)Cj ;

 �(�; �) =
NP
j=1

&j(�; �)Mj ;

 �(�; �) =
NP
j=1

�j(�; �)Lj ;

(30)

in which �j , &j , and �j are orthonormal polynomials
that satisfy all prescribed essential boundary condi-
tions and Cj , Mj , and Lj are unknown coe�cients that
can be calculated through the Rayleigh-Ritz method.
Parameters  � and  � are the rotation of transverse
normal about � and � axes, respectively. The uni-
formly distributed load is non-dimensionalized as q̂0 =
(a4q0)=(D0H). The non-dimensional form of strain
energy due to bending based on CLPT assumptions
is obtained as:

V̂B =
1
2

Z 1

0

Z 1

0
d11

�
@2ŵ
@�2

�2

+ d22�4
�
@2ŵ
@�2

�2

+ 4d66�2
�
@2ŵ
@�@�

�2

+ 2d12�2
�
@2ŵ
@�2

��
@2ŵ
@�2

�
+ 4d16�

�
@2ŵ
@�2

��
@2ŵ
@�@�

�
+ 4d26�3

�
@2ŵ
@�2

��
@2ŵ
@�@�

�
d�d�: (31)

The bending energy based on FSDT assumptions is
non-dimensionalized as follows

V̂B =
1
2

Z 1

0

Z 1

0
�2d11(

@ �
@�

)2 + d22(��)2

(
@ �
@�

)2 + 2d16�2 @ �
@�

(
@ �
@�

+ �
@ �
@�

)

+ 2d26��2 @ �
@�

(
@ �
@�

+ �
@ �
@�

) + d66�2

(�2(
@ �
@�

)2 + (
@ �
@�

)2 + 2�(
@ �
@�

)(
@ �
@�

))

+ a44(�2(
@ŵ
@�

)2 + �2 2
� + 2�� �

@ŵ
@�

)

+ 2a45(�
@ŵ
@�

+ � �)(
@ŵ
@�

+ � �)

+ a55�((
@ŵ
@�

)2 + � 2
� + 2

@ŵ
@�

 �)d�d�: (32)

The work done by external loads (i.e., uniformly
distributed load on the applied zone (Aq0) on the deck)
is de�ned by:

V̂q =
Z
Aq0

q̂0ŵ(�; �)d�d�: (33)

The stored strain energy in the non-dimensional form
is expressed as:

V̂� =
1
2

Z 1

0
�k̂�

"
@ŵ
@�

����
�=0

#2

d�

+
1
2

Z 1

0
�k̂�

"
@ŵ
@�

����
�=1

#2

d�: (34)

The total energy of the system subjected to uniformly
distributed load in non-dimensional form is then writ-
ten as:

�̂1 = V̂B � V̂q + V̂� + V̂S ; (35)

in which V̂S is the non-dimensional form of VS . In the
deck systems, due to the nature of loading and bound-
ary conditions, the deection due to the stretch of the
midplane is negligible. Consequently, its contribution
is not signi�cant and can be excluded without a�ecting
the solution. To reach the complete displacement �eld
solutions the total energy of the system is minimized
with respect to Cj � s, Mj � s and Lj � s. These
unknown coe�cients can be calculated by solving the
following set of 3N simultaneous equation:8>><>>:

@�̂1
@Cj = 0;
@�̂1
@Mj

= 0;
@�̂1
@Lj = 0:

(36)

2.3. Stability analysis
As stated before, one of the most important require-
ments of oor decks is their components' stability. The
stability of the components can also be evaluated by
the Rayleigh-Ritz method. Some deck components
are more prone to local buckling, and their stability
should be checked. In many decks, among all of the
components, facesheets are more vulnerable to local
buckling. Therefore, in this section facesheet stability
is considered. It is worth noting that the following
calculation is not limited to the facesheets, and the
stability of any slender component in compression can
be checked according to the following procedure.

The bending-induced high compressive stresses in
the center of the deck panel result in the possibility
of local buckling events in the upper facesheet. The
potential energy due to applied in-plane force is written
as:
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V̂L =
1
2

Z 1

0

Z 1

0
�x
�
@2ŵ(�; �)
@�2

�2

d�d�; (37)

in which �x is the non-dimensional form of Nx and is
de�ned as:

�x = �
�
a2

D0

�
Nx: (38)

In Figure 1 the critical buckling zone in the upper
facesheet is shown. The boundary conditions of the
upper facesheet in the critical zone are considered as
simply supported and clamped along y axis and x axis,
respectively [34].

The eigenfunctions of a beam with the same
boundary conditions are assumed as primary shape
functions. In most cases, it is reasonable to assume that
boundary conditions of the upper facesheet along the
length of the deck are clamped-clamped and along the
width of the deck is simply supported. Accordingly, the
eigenfunctions of a hinged-hinged beam and clamped-
clamped beam are chosen as shape functions of the
plate in x and y directions, respectively. The shape
functions of the plate are presented in Appendix A. In
this case, the total energy of the system will read as:

�̂2 = V̂B + V̂L; (39)

in which V̂B can be calculated based on the assumption
of CLPT [35] or FSDT [17]. By minimizing the
total energy of the system and solving the eigenvalue
problem, the critical buckling load can be obtained.

2.4. Vibration analysis
Vibration analysis of the deck systems in both bridges
and buildings is of great importance. One of the
important design criteria in building oor panel
systems is the vibration serviceability design. Floor
vibration design is presented in AISC design guide
11 [36]. The �rst step of the vibration design is
the calculation of the natural frequency of the deck
system. In the modal analysis, the �rst mode is of
the most importance. To calculate the �rst mode
natural frequency of the deck, the total energy in the
non-dimensional form is written as follows:

�̂3 = V̂B � V̂T + V̂�; (40)

Figure 1. Critical buckling zone in the upper facesheet.

in which V̂T is the kinematic energy of the freely vibrat-
ing deck in non-dimensional form and can be read as:

V̂T =
1
2

Z 1

0

Z 1

0
ŵ2�2d�d�; (41)

in which � is de�ned as:

� =
!a2

h

s
12�(1� �12�21)

E0
; (42)

! and � are the natural frequency and the equivalent
mass density of the deck, respectively. In the
calculation of natural frequency, orthonormal Gram-
Schmidt polynomials are used as shape functions.
After obtaining the natural frequency of the deck,
the natural frequency of the oor panel system can be
calculated for the vibration design of the oor panel
systems. The natural frequencies of the joists, beams,
and girders can be calculated through the fundamental
natural frequency equation of simply supported and
uniformly loaded beam as follows:

fj =
�
2

�
gEsIt
QL4

b

�1=2

; (43)

in which g is the acceleration of gravity. Parameters
Es and It are modulus of elasticity of steel and
transformed moment of inertia of beam section,
respectively. Parameter Q is uniformly distributed line
load and Lb is the length of the beam. The parameter
fj is the fundamental natural frequency of the joists
(Hz). The natural frequency of the oor system can
be calculated from the Dunkerley equation as follows:

1
f2
n

=
1
f2
j

+
1
f2
d
; (44)

in which fj and fd are the natural frequencies of the
joists and the deck, respectively.

2.5. Ductility analysis
In this section, a procedure is presented to ensure that
the hybrid deck exhibits ductile behavior by adding
steel components to the deck due to their inherent duc-
tile behavior. Figure 2 shows the schematic moment-
curvature curve of a ductile deck in which curvature
is divided into three ranges. In range 1 (� < �1) the
behavior is linear. The slope of the moment-curvature
curve (Kb) in this region can be de�ned based on the
elastic exural sti�ness of all constituents as:

Kb =
X

(EI)comp +
X

(EI)st; (45)

in which
P

(EI)comp and
P

(EI)st are the exural
sti�ness of the composite and steel parts, respectively.
In range 2 ( �1 < � < �2), steel parts start yielding,
but the composite parts are still linear. The slope of
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Figure 2. Schematic moment-curvature curve of a ductile
hybrid deck.

the deck in this range is âKb. Term â is a degradation
coe�cient of the sti�ness and will be calculated later.
All of the steel parts yield a curvature of less than �2.
At the beginning of the range 3 (� = �2), composite
parts start exhibiting nonlinear behavior.

In order to explicitly present the moment-
curvature relationship, a parabolic function that passes
through (0, 0), (�1, Ms1), and (�2, Ms2) is written as
follows:

� = �s1M
2
s + �s2Ms; (46)

�s2 =
�1 � �2[Ms1

Ms2
]2

Ms1 �Ms2[Ms1
Ms2

]2
; (47)

�s1 =
�2 �Ms2�s2

M2
s2

: (48)

The total moment that is the sum of the moment of
steel and composite parts, reads as:

Mtotal = Mst +Mcomp; (49)

in which Mtotal, Mst, and Mcomp are the total moment
of the deck and the moment carried by steel parts and
composite parts, respectively. In range 2, the total
moment of the deck can be calculated as:

Mtotal = Mst + �
X

(EI)comp; (50)

the di�erential of Eq. (50) with respect to the curvature
results in:

@Mtotal

@�
=
@Mst

@�
+
X

(EI)comp: (51)

As a result of steel yielding, the contribution of
steel layers in exural sti�ness is almost negligible.
Therefore, the term @Mst

@� can be neglected. Hence, the
degradation factor is calculated as:

â =
P

(EI)compP
(EI)comp +

P
(EI)st

: (52)

Degradation factor â is important in building ooring
panel design to prevent sudden total failure of the sys-
tem. Figure 3 shows a schematic view of an arbitrary
section of a deck in which each layer can be steel
or FRP laminate. The modulus of elasticity, width,
thickness, and area of ith layer are denoted by ELi ,
bLi , tLi , and ALi , respectively. It should be noted that
ELi of a composite laminate is the e�ective in-plane
longitudinal modulus [37]. The location of the neutral
axis in the elastic state (range 1) is calculated as:

�he =

nP
i=1

ALi ELi
hLi +hLi�1

2

nP
i=1

ALi ELi
: (53)

Figure 3. Schematic view of an arbitrary section of a deck.
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In range 2, the location of the neutral axis is written as:

�hp =

P
(ALk �Lk

hLk+hLk�1
2 )comp+

P
(ALm�Ly

hLm+hLm�1
2 )stP

(ALk �Lk )comp +
P

(ALm�Ly )st
; (54)

in which �Ly is the yield stress of the steel. Parameter
�1 shown in Figure 2 is the minimum curvature in
which the critical steel layer yields. Hence the yield
curvature of all steel layers is calculated and its
minimum value considered as �1.

�1 =
� "sty
jhLst�cr � �hej

�
min

; (55)

in which "sty and hLst�cr are the yield strain and
the position of the critical steel layer, respectively.
Similarly, �2 shown in Figure 2 is the minimum cur-
vature in which the critical composite layer fails which
corresponds to the starting of the degradation process.
Hence the failure curvature of all composite layers is
calculated and its minimum value considered as �2.

�2 = min

8<:hLcomp�cr � �hp > 0) h
"comp

FPF�T
hLcomp�cr��hp

i
;

hLcomp�cr � �hp < 0) h
"comp

FPF�C
�hp�hLcomp�cr

i
; (56)

in which hLcomp�cr is the position of the critical
composite layer. Parameters "comp

FPF�T and "comp
FPF�C

are the First Ply Failure (FPF) of the composite layer
(laminate) in tension and compression, respectively.
In this study, the Tsai-Wu failure criterion is used
for FPF analysis of laminas of a composite layer
(laminate). This criterion is written as [38]:

H1�1SR+H2�2SR+H6�12SR+H11(�1SR)2

+H22(�2SR)2 +H66(�12SR)2

+2H12(�1)(�2)SR2 = 1; (57)

in which H1, H2, H6, H11, H22, H66, and H12 are
parameters that depend on the ultimate stresses of
the laminae. The exact de�nition of these parameters
and the procedure of FPF analysis are presented in
[37] which is omitted here for the sake of brevity. The
stress ratio is shown by SR.

It is assumed that all steel layers yielded before
the whole section reaches a curvature of �2. This
assumption can be checked by:"

"sty
jhLst�last � �hej

#
max

< �2; (58)

hst�last is the position of the last steel layer to yield.
The ductility factor of the deck is de�ned as:

��deck =
�2

�1
: (59)

Based on the proposed method the ductility (��deck )

and degradation factor (â) can be calculated. One
of the limit states in the deck design is evaluating
the nonlinear deection of the deck subjected to high
concentrated force. To calculate the deection in the
concentrated loading in linear and nonlinear range a
procedure based on the nonlinear moment-area theo-
rem is proposed in which the deck is considered as a
simply supported beam.

�NL =
XL

Ld

Z Ld

0
�(x)(Ld � x)dx

�
Z XL

0
�(x)(XL � x)dx; (60)

in which �NL and Ld are deection and length of the
deck, respectively. The XL is the distance between
support and concentrated force. The curvature distri-
bution is denoted by �(x), which can be calculated as
follows:

�(x) =

8>>>><>>>>:
0 � x � XL ) �s1[Pcon(1� XL

Ld
x)]2

+�s2[Pcon(1� XL
Ld
x)];

XL � x � Ld ) �s1[PconXL(1� x
Ld

)]2

+�s2[PconXL(1� x
Ld

)];
(61)

in which Pcon is the applied concentrated force. For
di�erent moment distributions, this function is changed
accordingly. Since the input of this method is the
moment distribution of the deck and moment-curvature
of the cross-section, this procedure can be applied to
reach the nonlinear load-deection of arbitrary loading
conditions. Substituting Eq. (61) in Eq. (60) results in:

�NL =
Pcon
12

[
XL(XL � Ld)

Ld
]2

[3XLPcon�s1(Ld �XL) + 4Ld�s2]: (62)

To summarize the entire procedure, a owchart is
presented in Figure 4. This owchart is used to develop
the computer code to analyze FRP decks.

3. Applications

To implement the proposed method, three examples
are presented. In the �rst example, a sandwich panel
is analyzed. The second example is dedicated to the
analysis of an all-FRP deck on supporting steel beams.
In the third example, a hybrid steel-FRP deck with a
complex geometry is analyzed from the material stage
to the post-damage stage.

Finite element analysis is a well-known, reliable
and widely-used method for analyzing di�erent forms
of structures [39{41]. Several examples can be found
in the literature such as Patil et al. [42{44], Mysore et
al. [45], Nimbagal et al. [46].
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Figure 4. The owchart of the proposed method.

High �delity FEA is employed using Abaqus
6.14 software [47] to assess the accuracy of the pro-
posed method in all examples. In the FEA, the
deck's composite components are modeled using the
8-noded quadrilateral in-plane general-purpose contin-
uum shell. The steel components are modeled using the
8-noded linear brick element of the 3D-stress family
[48]. Through-thickness properties and layup of the
composite components are modeled explicitly. The
mesh sizes of 5 mm�5 mm and 10mm�10 mm are
used to discretize composite and steel components,
respectively. The contact behavior in components'
interface is modeled using tie constraints.

3.1. Example 1
In this section, the applicability of the proposed
framework is examined for sandwich panels. Several
FRP sandwich panels for building oor systems are
tested by Zhu et al. [49]. Specimen \PAfb80-4-120"

of the aforementioned study is considered here. This
sandwich panel has GFRP facesheets and cores. The
shear sti�ness and strength of the core are increased
by wooden blocks. The deck has simply supported
edges on two opposite sides and has free boundary
conditions in the other edges. The length and width of
the specimen are 1.5 m and 0.48 m, respectively. The
geometry of this sandwich panel is shown in Figure 5.

The material properties of the sandwich panel
components are presented in Table 1.

Figure 5. The geometry of the sandwich panel in
Example 1 proposed by Zhu et al. [49].

Table 1. The material properties of the sandwich panel components tested by Zhu et al. [49]

Material E1 (GPa) E2 (GPa) E3 (GPa) �12 �13 �23 G12 (GPa) G13 (GPa) G23 (GPa)

GFRP facesheet 20.4 9.52 9.52 0.21 0.21 0.21 3.32 3.32 3.32
GFRP web 5.9 3.21 3.21 0.24 0.24 0.24 5.51 5.51 5.51
Wooden core 3.87 1.47 1.47 0.23 0.23 0.23 0.46 0.46 0.21
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Figure 6. Deection of deck versus deection of the
equivalent orthotropic plate in Example 1 subjected to
uniformly distributed load.

Figure 7. Deection of deck vs. deection of the
equivalent orthotropic plate in Example 1 subjected to
concentrated load.

3.1.1. Elastic deformation analysis
The elastic deection of the deck subjected to uni-
formly distributed, 6 kN/m2, and concentrated loads,
6.34 kN, are calculated based on CLPT and FSDT.
The results are veri�ed against FEA as shown in
Figure 6 and Figure 7, respectively. Due to negligible
shear deformations the results of CLPT and FSDT are
approximately the same.

3.1.2. Vibration analysis
The �rst natural frequency of the sandwich panel
including �nishing and furniture is calculated as 161.89
rad/s using FEA. The natural frequency calculated by
the Rayleigh-Ritz method is 169.15 rad/s which is in
agreement with FEA results.

3.2. Example 2
To evaluate the applicability of the proposed method
for all-FRP decks, in the second example, a oor panel

system consists of an all-FRP deck and a supporting
steel beam named \UA" in [13] is considered. In this
case study, the proposed method is evaluated in the
case of a pultruded composite deck. The geometry
of this deck is shown in Figure 8. The deck has
simply supported edges on two opposite sides and has
free boundary conditions in other edges. The length
and width of the specimen are 2.73 m and 0.5 m,
respectively.

The deck is fabricated from pultruded GFRP
materials. The axial modulus and transverse modulus
of the facesheet are 31.7 GPa and 5.0 GPa, respectively.
The axial modulus of the box pro�le is 32.2 GPa.

3.2.1. Elastic deformation analysis
The elastic deection of the deck subjected to uni-
formly distributed (2.5 kN/m2) and concentrated load
(1.36 kN) are calculated based on CLPT and FSDT
and the results are veri�ed against FEA as shown in
Figures 9 and 10, respectively. As indicated in these
plots, due to the high shear sti�ness of the deck, the
shear deformation is negligible and the results of CLPT
and FSDT are approximately the same.

3.2.2. Stability analysis
In this section, the stability of the upper facesheet is
considered that is a compressive component of the deck.
Qiao and Shan [50] calculated the critical buckling load
of a plate with clamped-clamped boundary conditions
as:

Ncr =
24
b2
h
1:871

p
D11D22 + (D12 + 2D66)

i
; (63)

in which the critical aspect ratio of the clamped-
clamped plate is written as:

cr = 0:663
�
m4D11

D22

� 1
4

; (64)

in which m is the buckling mode number. The width
of the critical part of the upper facesheet is 5 cm
and based on Eq. (64) the critical length is calculated
as 5.2 cm. The critical buckling load of the upper
facesheet using the Rayleigh-Ritz method is calculated
as Ncr = 5160 kN/m which is in agreement with that of
Eq. (63) (Ncr = 5149 kN/m). The critical buckling load
is higher than the failure load of the upper facesheet
and the facesheet is buckling safe.

3.2.3. Vibration analysis
The �rst natural frequency of the deck, including
�nishing and furniture, is calculated as 63.38 rad/s
using FEA. The natural frequency calculated by the
Rayleigh-Ritz method is 66.42 rad/s, which is in agree-
ment with the FEA simulations. The natural frequency
of the supporting beam and oor panel system using
Eq. (43) and Eq. (44) are 63.07 rad/s and 45.7 rad/s,
respectively.
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Figure 8. The geometry of the all-FRP deck in Example 2 proposed by Satasivam et al. [13].

Figure 9. Deection of deck vs. deection of the
equivalent orthotropic plate in Example 2 subjected to
uniformly distributed load.

Figure 10. Deection of deck vs. deection of the
equivalent orthotropic plate in Example 2 subjected to
concentrated load.

3.3. Example 3
In this section, a hybrid deck with novel and complex
geometry is analyzed and designed to indicate the
applicability of the proposed method. The dimension
and geometry of the deck are shown in Figure 11.

3.3.1. Material and stacking sequence
It is assumed that this deck is composed of composite
materials and steel. GFRP material has the advantages
of composite materials and has a lower cost, which is
a very important parameter in building construction.
Hence, using GFRP materials is more reasonable.
Axial modulus, transverse modulus, axial Poisson's
ratio, axial shear modulus, and the speci�c gravity
of the GFRP are 37.55 GPa, 5.68 GPa, 0.25, 2.19
GPa, and 1.98, respectively. The orientations of the
�bers of the facesheet laminates are selected of 60%
0�, 20% �45� and 20% 90�. The orientations of the
�bers of the core laminate are selected of 66% �45�
and 34% 0� [51]. The facesheets consist of 40 plies
with the stacking of [06= + 45= � 45=902]2s. The core
laminate is comprised of 24 plies with the stacking of
[+45=�45=+45=�45=02]2s. Steel parts are considered
to be made from A36 steel [52].

3.3.2. Elastic deformation analysis
The elastic deection of the deck is calculated based
on the proposed method, and FEA is used to check
its accuracy. The deections of the deck subjected
to distributed and concentrated loads calculated by
the Rayleigh-Ritz method and FEA are compared in
Figures 12 and 13, respectively. It should be noted
that the concentrated load is located at the center of
the upper facesheet. It can be seen that the proposed
method can calculate deection accurately.

As shown in Figure 13, applying concentrated
load results in high shear stress in the vicinity of the
load causing extreme local deformations, but cannot
be captured by the shape functions used in the study.
The proposed analysis method aims to calculate
the deformation accurately with low computational
cost and was found to have acceptable accuracy for
maximum deformation, so local e�ects of concentrated
loads were neglected.

3.3.3. Stability analysis
The critical buckling load of the upper facesheet is
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Figure 11. The geometry of the deck in Example 3 (3D and bottom views).

Figure 12. Deection of deck vs. deection of the
equivalent orthotropic plate in Example 3 subjected to
uniformly distributed load.

Figure 13. Deection of deck vs. deection of the
equivalent orthotropic plate in Example 3 subjected to
concentrated load.

calculated as: Ncr=63.53 kN/m. The critical buck-
ling load calculated by Eq. (63) is Ncr=63.36 kN/m.
Therefore, the value of critical buckling load obtained
from the Rayleigh-Ritz method agrees with the result

obtained from Eq. (63). The critical buckling load is
higher than the failure load of the upper facesheet.

3.3.4. Vibration analysis
The �rst natural frequency of the deck, including
�nishing and furniture as well as live load obtained
through the Rayleigh-Ritz method, is 254.97 rad/s
which shows good agreement with the results of �nite
element (251.35 rad/s).

3.3.5. Ductility analysis
The �rst step in ductility analysis is calculating the
damage initiation and yield strains of composite and
steel layers, respectively. Therefore, FPF analysis is
implemented to calculate the post-damage behavior
of laminates. The FPF shows that the stress-strain
curve of the core laminates has a degradation in the
sti�ness in the strain of 0.006, which is dedicated to
the failure of �45� laminas. The fracture strain of the
laminae of the core is 0.018 in which 0� laminas fail.
The stress-strain curve of the facesheet laminas shows
two-point of degradation in strains of 0.004 and 0.007
which are corresponding to the failure of 90� laminas
and �45� laminas, respectively. The fracture strain
of the facesheet laminate is equal to 0.18 in which 0�
laminas fail. It is worth noting that the yield strain of
the steel is equal to 0.0012. The values of �1 and �2,
using Eq. (55) and Eq. (56), are calculated as 0.031
and 0.098, respectively. The degradation and ductility
factors using Eq. (52) and Eq. (59) of the deck are
calculated as 0.61 and 3.13, respectively. The plastic
analysis method which has been presented in Ref. [53]
is used to calculate the moment-curvature relationship
of steel layers. In this method, the steel sections are
meshed by horizontal lines, which divide the anges of
steel channels into 4 strips and webs of the steel part
into 16 strips. In ranges 1 and 2, the composite layers
are elastic and their corresponding exural sti�ness
is added to steel layers. Further information about
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Figure 14. Moment-curvature diagram of the deck
section.

Figure 15. The load-deection curve of the deck
subjected to concentrated load.

this method can be found in Ref. [53]. The moment-
curvature curve of the deck section acquired from FEA
and the proposed method is compared in Figure 14.
As it can be seen, the proposed analytical method can
accurately calculate the nonlinear moment-curvature of
the deck section.

The parabolic curve calculated by Eq. (46) is
also shown in Figure 14. The values of �s1 and �s2
parameters are calculated as 5:24 � 10�5 kN�2.m�3

and 1:54 � 10�3 kN�1.m�2, respectively. To calculate
the nonlinear load-deection curve of the deck, it is
considered that the deck is subjected to a concentrated
force that is located at arbitrary positions. The
nonlinear load-deection graphs of the deck, calculated
by FEA and Eq. (62), with XL=1 m and XL=0.75 m
are compared in Figure 15. The case of concentrated
force located at the center of the upper facesheet is
the critical loading case. As shown, the proposed
method can predict the nonlinear deection of the deck
accurately.

4. Conclusions

This study presents an integrated analysis method for
building Fiber Reinforced Polymer (FRP) deck panels.
This method was implemented in a computer code
and was used to analyze three di�erent building FRP
deck panels to evaluate their accuracy and versatility.
These decks included a sandwich panel, a pultruded all-
FRP deck, and a hybrid-steel FRP deck with laminar
FRP. The results showed that the proposed integrated
method is computationally-e�cient and accurate. This
method takes into account four requirements, including
the elastic deection, the stability of the components,
the vibration characteristics, and the ductility of the
deck. The main conclusions of this study are as follows:

� The elastic deection was calculated using the
Rayleigh-Ritz method with Gram-Schmidt shape
functions. Results from Finite Element Analysis
(FEA) and the proposed method were compared for
three examples, showing similar maximum elastic
deections under uniform loading with a maximum
di�erence of 0.04 mm;

� The stability of the deck components was calculated
by the Rayleigh-Ritz method with beam eigenfunc-
tions. The critical local buckling loads of the
components of examples 2 and 3 calculated by the
existing equations in the literature are 5149.0 kN/m
and 63.5 kN/m. The proposed method calculated
this parameter as 5160.0 kN/m and 63.4 kN/m,
respectively;

� The natural frequency, which plays a pivotal role
in the vibration characteristics of the decks, is
calculated using the Rayleigh-Ritz method with
Gram-Schmidt shape functions. According to FEA,
the natural frequency in examples 1, 2, and 3 equal
161.89 rad/s, 63.38 rad/s, and 251.35 rad/s. The
proposed method calculated the natural frequencies
as 169.15 rad/s, 66.42 rad/s, and 254.97 rad/s;

� A novel method was proposed to ensure the ductile
behavior of the deck and was used to calculate the
nonlinear load deection for one example. Results
were compared to those from FEA.

The proposed method showed comparable results to
FEA and had a lower computational cost. It can be
used to analyze various FRP deck panels with high
accuracy and ease of use, without requiring expertise
in FE modeling.
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Appendix A

Deection shape functions [32]
The deection shape functions are generated by using
the Gram-Schmidt procedure. The following functions
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are orthonormal and can ful�ll the essential boundary
conditions. The general behavior of these functions is
based on the primary functions in which the essential
boundary conditions are dedicated. The deection
shape functions are written as:8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

�1(�; �) = �1(�; �) = 5:47(1� �)�;
�2(�; �) = �2(�; �) =

�(�14:49 + 43:47� � 28:98�2);
�3(�; �) = �3(�; �) =

�(�9:48 + �(18:97� 18:97�) + 9:48�);
�4(�; �) = �4(�; �) =

�(28:46� 161:27� + 265:63�2 � 132:81�3);
�5(�; �) = �5(�; �) =

�(25:09� 75:29� + 50:19�2

+�(�50:19 + 150:59� � 100:39�2));
�6(�; �) = �6(�; �) =
�12:24(1� 6� + 6�2)(�1 + �)�;

�7(�; �) = �7(�; �) =
�(�48:06 + 432:56� � 1249:62�2

+1441:87�3�576:75�4);
�8(�; �) = �8(�; �) =

�(�49:29 + 279:33� � 460:08�2 + 230:04�3

+�(98:59� 558:67� + 920:17�2 � 460:08�3));
�9(�; �) =�9(�; �) = �(�32:40 + 97:21� � 64:80�2

+�2(�194:42 + 583:26� � 388:84�2)
+�(194:42� 583:26� + 388:84�2)):

(A.1)

8>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>:

&1(�; �) = 1
&2(�; �) = �1:73 + 3:46�
&3(�; �) = �1:73 + 3:46�
&4(�; �) = �1:73 + 3:46�
&5(�; �) = 2:23� 13:41� + 13:41�2

&6(�; �) = 3� 6� + �(�6 + 12�)
&7(�; �) = 2:23� 13:41� + 13:41�2

&8(�; �) = �3:87 + 23:23�
�23:23�2 + �(7:74� 46:47� + 46:47�2)

&9(�; �) = �3:87 + �(23:23� 46:47�)
+7:74� + �2(�23:23 + 46:47�)

(A.2)

Buckling shape functions [54]
The buckling shape functions are considered as beam
eigenfunctions with the same boundary condition and
are written as:

�pq = XpYq; p; q = 1; 2; 3; :::; (A.3)

in which Xp and Yq are the eigenfunctions of a hinged-
hinged and a clamped-clamped beam, respectively.

The eigenfunctions of a hinged-hinged beam are cal-
culated as follows:

Xp = sin(p��); (A.4)

in which p is the number of modes and � is the non-
dimensional form of the length of the beam. The eigen-
functions of a clamped-clamped beam are written as:

Yq = J(�q�)� J(�q)
H(�q)

H(�q�); (A.5)

in which � is the non-dimensional form of the length
of the beam. Parameters H(�) and J(�) are two
functions and are de�ned as:(

H(�) = sinh(�)� sin(�)
J(�) = cosh(�)� cos(�) (A.6)
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