Hyperelastic and viscoelastic modeling of the ovine intervertebral disc tissue

Document Type : Article

Authors

Bio-Inspired System Design Laboratory, Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, P.O. Box 1591634311, Iran

Abstract

Intervertebral disc (IVD) carries compressive loads and resists the tensile and shear stress, produced during bending and rotational movements. Hence, identifying its mechanical behavior has always encouraged researchers to propose various models for this tissue. Both viscoelastic and hyperelastic behavior have been observed regarding the IVD. Therefore, this study aims at mechanically characterizing the tissue using the existing hyper- and viscoelastic constitutive models and further discuss the best ones. Three stress relaxation tests were performed on ten ovine cervical IVD samples to evaluate their viscoelastic behavior. Models with linear, quasi-linear, and nonlinear behavior were implemented. For the hyperelastic response, another test was carried out using a load with a constant strain rate to fit seven previously suggested hyperelastic constitutive models to our recorded data. All tests were performed as uniaxial compression. Calculations were made using isotropy and incompressibility assumptions. Results approved the nonlinearity of the tissue’s viscoelastic behavior since the linear models predicted divergent responses for different strain inputs. However, modified superposition theory, featuring a time- and strain-dependent relaxation function, was the most accurate model to predict the IVD response at different strain levels. As for hyperelasticity, Mooney-Rivlin, Yeoh, and Veronda-Westmann models fitted the experimental data with higher R2 values.

Keywords

Main Subjects


References:
1. Ghezelbash, F., Shirazi-Adl, A., Baghani, M., et al. "On the modeling of human intervertebral disc annulus fibrosus: Elastic, permanent deformation and failure responses", Journal of Biomechanics, 102, 109463 (2020). https://doi.org/10.1016/j.jbiomech.2019.109463.
2. Ogden, R.W., Non-linear Elastic Deformations, Courier Corporation (1997).
3. Komeili, A., Rasoulian, A., Moghaddam, F., et al. "The importance of intervertebral disc material model on the prediction of mechanical function of the cervical spine", BMC Musculoskeletal Disorders, 22(1), p. 324 (2021). DOI: 10.1186/s12891-021-04172-1.
4. Jafari, B., Katoozian, H.R., Tahani, M., et al. "A comparative study of bone remodeling around hydroxyapatite-coated and novel radial functionally graded dental implants using finite element simulation", Medical Engineering and Physics, 102, 103775(2022).DOI: 10.1016/j.medengphy.2022.103775.
5. Sadeghnejad, S., Elyasi, N., Farahmand, F., et al. "Hyperelastic modeling of sino-nasal tissue for haptic neurosurgery simulation", Scientia Iranica, 27(3), pp. 1266-1276 (2020).DOI: 10.24200/SCI.2019.50348.1652.
6. Casaroli, G., Galbusera, F., Jonas, R., et al. "A novel finite element model of the ovine lumbar intervertebral disc with anisotropic hyperelastic material properties", PLoS One, 12(5), 0177088 (2017). DOI: 10.1371/journal.pone.0177088.
7. Kandziora, F., P ugmacher, R., Scholz, M., et al. "Comparison between sheep and human cervical spines: an anatomic, radiographic, bone mineral density, and biomechanical study", Spine, 26(9), pp. 1028-1037 (2001). DOI: 10.1097/00007632-200105010-00008.
8. Valentin, S. and Licka, T.F. "Spinal motion and muscle activity during active trunk movements-comparing sheep and humans adopting upright and quadrupedal postures", Plos One, 11(1), 0146362 (2016).DOI: 10.1371/journal.pone.0146362.
9. Qiu, T.-X., Tan, K.-W., Lee, V.-S., et al. "Investigation of thoracolumbar T12-L1 burst fracture mechanism using finite element method", Medical Engineering and Physics, 28(7), pp. 656-664 (2006). DOI: 10.1016/j.medengphy.2005.10.011.
10. Yang, H., Jekir, M.G., Davis, M.W., et al. "Effective modulus of the human intervertebral disc and its effect on vertebral bone stress", Journal of Biomechanics, 49(7), pp. 1134-1140 (2016).DOI: 10.1016/j.jbiomech.2016.02.045.
11. Green, T., Adams, M., and Dolan, P. "Tensile properties of the annulus fibrosus", European Spine Journal, 2(4), pp. 209-214 (1993).DOI: 10.1007/BF00299447.
12. Martins, P., Natal Jorge, R., and Ferreira, A. "A comparative study of several material models for prediction of hyperelastic properties: Application to siliconerubber and soft tissues", Strain, 42(3), pp. 135-147 (2006). DOI: 10.1111/j.1475-1305.2006.00257.x.
13. Wagnac, E., Arnoux, P.-J., Garo, A., et al. "Calibration of hyperelastic material properties of the human lumbar intervertebral disc under fast dynamic compressive loads", Journal of Biomechanical Engineering, 133(10), 101007-1-101007-10 (2011). DOI: 10.1115/1.4005224.
14. Newell, N., Carpanen, D., Grigoriadis, G., et al. "Material properties of human lumbar intervertebral discs across strain rates", The Spine Journal, 19(12), pp. 2013-2024 (2019).
DOI: 10.1016/j.spinee.2019.07.012.
15. Yahyaiee, A., Karimi, A., and Rouhi, G. "Comparison of four hyperelastic models for intervertebral discs: A finite element study", 28th Annual International Conference of Iranian Society of Mechanical Engineering (ISME2020), Tehran, Iran (2020).
16. Safshekan, F., Tafazzoli-Shadpour, M., Abdouss, M. and Shadmehr, M.B. "Viscoelastic properties of human tracheal tissues", Journal of Biomechanical Engineering, 139(1), 011007 (2017). https://doi.org/10.1186/s12931-017-0540-y.
17. Ekstrom, L., Kaigle, A., Hult, E., et al. "Intervertebral disc response to cyclic loading-an animal model", Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 210(4), pp. 249-258 (1996). DOI: 10.1243/PIME PROC 1996 210 421 02.
18. Ellingson, A.M. and Nuckley, D.J. "Intervertebral disc viscoelastic parameters and residual mechanics spatially quantified using a hybrid confined/in situ indentation method", Journal of Biomechanics, 45(3), pp. 491-496 (2012). DOI: 10.1016/j.jbiomech.2011.11.050.
19. Groth, K.M. and Granata, K.P. "The viscoelastic standard nonlinear solid model: Predicting the response of the lumbar intervertebral disk to low-frequency vibrations", Journal of Biomechanical Engineering, 130(3), 031005-1-031005-6 (2008). DOI: 10.1115/1.2904464.
20. Yoganandan, N., Umale, S., Stemper, B., et al. "Fatigue responses of the human cervical spine intervertebral discs", Journal of the Mechanical Behavior of Biomedical Materials, 69, pp. 30-38 (2017). https://doi.org/10.1016/j.jmbbm.2016.11.026.
21. Lakes, R.S., Viscoelastic Solids, 9 CRC Press (1998).
22. Provenzano, P., Lakes, R., Corr, D., et al. "Application of nonlinear viscoelastic models to describe ligament behavior", Biomechanics and Modeling in Mechanobiology, 1(1), pp. 45-57 (2002). DOI: 10.1007/s10237-002-0004-1.
23. Sciortino, V., Cerniglia, D., Pasta, S., et al., Fractional Calculus as a New Perspective in the Viscoelastic Behaviour of the Intervertebral Disc, EuropeanWorkshop on Structural Health Monitoring, pp. 915-925 (2023). https://doi.org/10.1007/978-3-031-07254-3-92.
24. Jafari, B., Shams, V., Esfandiari, M., et al. "Nonlinear contact modeling and haptic characterization of the ovine cervical intervertebral disc", 2022 9th IEEE RAS/EMBS International Conference for Biomedical Robotics and Biomechatronics (BioRob), Seoul, South Korea, pp. 1-6 (2022). DOI: 10.1109/BioRob52689.2022.9925398.
25. Newell, N., Little, J., Christou, A., et al. "Biomechanics of the human intervertebral disc: A review of testing techniques and results", Journal of the Mechanical Behavior of Biomedical Materials, 69, pp. 420-434 (2017). https://doi.org/10.1016/j.jmbbm.2017.01.037.
26. Kasra, M., Parnianpour, M., Shirazi-Adl, A., et al. "Effect of strain rate on tensile properties of sheep disc anulus fibrosus", Technology and Health Care, 12(4), pp. 333-342 (2004). DOI: 10.3233/THC-2004-12405.
27. Fung, Y.-C., Biomechanics: Mechanical Properties of Living Tissues, Springer Science and Business Media (2013).
28. Darijani, H. and Naghdabadi, R. "Hyperelastic materials behavior modeling using consistent strain energy density functions", Acta Mechanica, 213(3-4), pp. 235-254 (2010). DOI: 10.1007/s00707-009-0239-3.
29. Safshekan, F., Tafazzoli-Shadpour, M., Abdouss, M., et al. "Mechanical characterization and constitutive modeling of human trachea: age and gender dependency", Materials, 9(6), p. 456 (2016). DOI: 10.3390/ma9060456.
30. Sadeghnejad, S., Esfandiari, M., Farahmand, F., et al. "Phenomenological contact model characterization and haptic simulation of an endoscopic sinus and skull base surgery virtual system", 4th International Conference on Robotics and Mechatronics (ICROM), (IEEE), pp. 84-89 (2016). DOI: 10.1109/ICRoM.2016.7886822.