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Abstract. The Intervertebral Disc (IVD) carries compressive loads and resists the tensile
and shear stress produced during bending and rotational movements. Hence, identifying
its mechanical behavior has always encouraged researchers to propose various models for
this tissue. Both viscoelastic and hyperelastic behavior have been observed regarding
IVD. Therefore, this study aims to mechanically characterize the tissue using the existing
hyperelastic and viscoelastic constitutive models and further discusses the best ones. Three
stress relaxation tests were performed on ten ovine cervical IVD samples to evaluate
their viscoelastic behavior. Models with linear, quasi-linear, and nonlinear behavior were
implemented. For the hyperelastic response, another test was carried out using a load with
a constant strain rate to �t seven previously suggested hyperelastic constitutive models to
our recorded data. All tests were performed as uniaxial compression. Calculations were
made using isotropy and incompressibility assumptions. Results approved the nonlinearity
of the tissue's viscoelastic behavior since the linear models predicted divergent responses
for di�erent strain inputs. However, modi�ed superposition theory, featuring a time-
and strain-dependent relaxation function, was the most accurate model to predict the
IVD response at di�erent strain levels. As for hyperelasticity, Mooney-Rivlin, Yeoh, and
Veronda-Westmann models �tted the experimental data with higher R2 values.

© 2024 Sharif University of Technology. All rights reserved.

1. Introduction

Intervertebral Discs (IVDs) act as shock absorbers
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between the vertebral bodies in the spinal column
and permit the movements of the spine due to their
capability of tolerating both axial and shear forces.
The mechanical function of this tissue is highly related
to its structure, which consists of two main parts: (a)
A thick Annulus Fibrosus (AF) on the outer layers
of the disc and (b) Nucleus Pulposus (NP), which
is in the center of the disc structure. The semi-
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uid structure of the NP is formed of a gelatinous
substance, while the AF is like a cover of collagen �ber
networks with an onion-like structure trapping the 
uid
inside [1].

The review of literature is categorized into three
groups. First comes a short review of the selection
of the animal samples. Then, the following two
paragraphs review the related literature about hypere-
lastic and viscoelastic modeling, respectively. In order
to improve the designs in the �eld of orthoses and
orthopedics, theoretical models of tissues are needed for
numerical simulations, which necessitate mechanical
characterization [2{4]. For mechanically characterizing
the IVD, a proper sample should �rst be selected. As
for in vitro experiments, human specimens are more
accurate to use than animal samples. However, there
are several challenges in using human specimens, such
as the di�culty in �nding fresh human specimens,
speci�cally from the young population. Moreover,
there is a considerable variation in the mechanical
properties and geometry of the human samples due to
di�erences in gender, age, bone quality, and disc degen-
erative changes [5]. Furthermore, in research studies,
using animal samples instead of human ones is more
time- and cost-e�cient and is still considered a pre-
liminary e�ort toward human tissue characterization
[6]. Despite the intrinsic limitations and simpli�cations
of this substituting method, animal samples are more
readily available and have more uniform geometries.
Among the options, sheep are considered a preferred
choice because of the many similarities in their disc
anatomy with humans [5]. Sheep have a vertebral body,
cross-sectional area, and spinal canal size similar to
those of humans, as well as analogous IVD structural
geometry. In research to see whether the sheep spine is
a reliable model for human spine studies, Kandziora
et al. [7] concluded that the ovine motion segment
C3-C4 was the most suitable sample for the human
motion segment. Most in-vitro studies have chosen the
human age range of 20{55 for their investigations on
the biomechanics of IVD [7,8].

Several studies assumed isotropic and linear elas-
tic behavior for the IVD components in compression
and tension [9{11]. Elastic models were primarily
implemented for short-term responses or dynamic in-
vestigations. Martins et al. [12], using numerous
experimental data and theoretical models from the
literature, performed a comparison on the mechanical
behavior of the IVD and concluded that hyperelastic
models are better at describing the tissue compared
to the linear elastic ones. They compared seven
hyperelastic models and found that Yeoh and Ogden's
models resulted in the best correlation with exper-
imental data. Their comparison was performed on
silicone-rubber and pig muscular tissue. Hyperelastic
models have been extensively used to model the IVD

tissue and its constituents [1,13,14] for various reasons,
such as identifying the tissue properties under fast
dynamic compressive load [13], predicting mechanical
failures using �nite element simulation method [6], and
investigating the short-term response and strain rate
dependency of the IVD's mechanical behavior [14].
Ghezelbash et al. [1] employed hyperelastic models
for the IVD to predict the failure threshold of AF
in di�erent directions. Recently, Yahyaiee et al. [15]
compared several hyperelastic models for the IVD
under physiological loads. Their results suggested that
the Yeoh model had the best consistency with the
experimental data.

On the other hand, numerous researchers have
suggested viscoelastic models for IVD to describe its
time-dependent response [16{18]. Ekstr�om et al. [17]
implemented three-parameter and four-parameter lin-
ear viscoelastic models for the entire IVD tissue to
investigate the creep behavior and the time-dependent
response of the tissue in cyclic compressive loading.
However, they declared that the parameters they
obtained were dependent on the load magnitude and
could barely be compared to the parameters achieved
by di�erent input loads, which was due to the nonlinear
viscoelasticity of the tissue. Ellingson and Nuckley [18]
performed stress relaxation tests up to 15% strain level
to spatially characterize the viscoelastic parameters of
the IVD tissue. They used the Prony (PRO) series for
the stress relaxation function of the linear model, which
yielded a time-dependent viscoelastic response. Groth
and Granata [19] introduced a nonlinear model to mod-
ify the standard linear solid one. They stated that the
parameters of linear models were strain-independent
and could not explain the nonlinear behavior of the
IVD tissue. Quasi-Linear Viscoelastic (QLV) models
can also be employed for the IVD, the stress relaxation
functions of which assigned separated functions for
time and strain dependencies [20]. Therefore, the time-
dependent part was not a function of strain level, and
the same rate of relaxation was predicted for all strain
levels. However, the behavior of soft tissues can deviate
from the QLV assumption. Thus, fully nonlinear
models such as the Modi�ed Superposition (MSP) the-
ory, using interconnected constitutive coe�cients, have
previously been proposed to phenomenologically model
the nonlinear viscoelastic behavior in a general but
more accurate way [21]. The nonlinear superposition
method has also been used to describe the nonlinear
viscoelasticity of soft tissues such as ligaments, smooth
muscle, connective and cartilaginous tissue [16,22].
Sciortino et al. [23] used a new method based on frac-
tional calculus to fully model the viscoelastic behavior
of the IVD. Recently, Jafari et al. [24] employed a
nonlinear viscoelastic model for the IVD to capture its
time- and displacement-dependent behavior and link
the tissue model with a haptic simulation algorithm.
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However, there was no trace of using MSP theory for
predicting the nonlinear viscoelastic response of the
IVD in the recent literature.

In order to clarify the need and necessity of this
study, it must be summarized that linear viscoelastic
models can be used to predict tissues' behavior in dif-
ferent strain levels (in stress relaxation tests), provided
that the tissue behaves linearly viscoelastic entirely.
Otherwise, nonlinear models must be employed. How-
ever, if the nonlinearity of the tissue is not prominent
to a great extent, as a simpler approach for modeling,
the quasi-linear formulation can be used instead of a
completely nonlinear (and inseparable) one. Hence, the
predictability of viscoelastic models should be assessed
for the tissues under the study. Although there have
been many studies in the literature characterizing the
mechanical behavior of the IVD, there is still a need
for a fair and comprehensive comparison between the
viscoelastic models for the IVD tissue in terms of
and focusing on their viscoelastic linearity behavior.
In addition, among those who were not interested in
considering the viscoelastic behavior of the IVD, very
few researchers compared a su�ciently wide variety of
hyperelastic models for the tissue under uniaxial com-
pression. Consequently, the parameters of these models
have not been investigated thoroughly, while these
comparisons and identi�ed parameters add to what is
already known in this �eld and can be assistive in future
modeling and simulations of this tissue. Consequent to
the mentioned needs, the primary purpose of this study
is to characterize the general mechanical properties
of the ovine IVD tissue under uniaxial compressive
load based on the existing hyperelastic and viscoelastic
constitutive models and select the best one in terms
of the closeness of each model's prediction to our
experimental data. The nonlinearity of the viscoelastic
behavior of the IVD will also be discussed.

At the beginning of Section 2, our general
method for achieving the aforementioned purpose is
brie
y expressed, which includes stress relaxation tests
and a compressive test with a constant strain rate.
The �rst part of this section provides details about
the preparation of the IVD samples used in this
study, while the second part describes the experi-
mental setup and each mechanical test performed.
Next comes the elaboration of the theory of three
common viscoelastic models, showing linear, quasi-
linear, and nonlinear viscoelastic behavior, respec-
tively. Finally, the last part deals with the continuum-
based formulation required for deriving hyperelastic
constitutive models from the strain energy functions
suggested by the literature. In Section 3, the re-
sults of hyperelastic and viscoelastic modeling are
presented and discussed. Finally, concluding comments
are delivered in Section 4, to sum up the entire
manuscript.

2. Materials and methods

In this study, stress relaxation tests with three di�erent
constant displacements were performed on ten ovine
cervical IVD samples to assess the viscoelastic behavior
of the tissue. Displacements were applied as uniax-
ial compression, ultimately providing the stress- and
strain-time data for each sample. The stress and strain
data of the samples were averaged for each time point,
and the mean values were expressed and used here.
First, isochronal tests were performed on the data to
determine the linear or nonlinear viscoelastic behavior
of the tissue under the tests' conditions. Then, three
viscoelastic constitutive models, namely, the linear
viscoelasticity (using two forms of the PRO series),
the QLV formulation, and the MSP theory of nonlinear
viscoelasticity, were �tted to the experimental data to
obtain the models' parameters and further evaluate
each model's predictability at di�erent strain levels.
Furthermore, a compressive load with a constant strain
rate was applied to the samples, and the mean Cauchy
stress values against their corresponding strain data
were achieved. Seven hyperelastic constitutive models
were �tted to the mean data from the samples to select
the best �tting one. All curve �tting procedures were
executed by MATLAB curve �tting toolbox, using the
Levenberg-Marquardt algorithm.

2.1. IVD sample preparation
Ten fresh ovine IVD samples from the entire fourth
cervical (C4) motion segments were obtained from
an abattoir. The specimens included healthy discs
attached to their two vertebral bodies and endplates.
The samples were stored at �17�C during the isolation
time and then kept in physiological saline solution
at ambient temperature for 5 hours prior to the
test to make sure the tissue retained the mechanical
properties of its physiological condition. Soft tissues,
posterior processes, and other elements were removed
from the samples, but the vertebral bodies and the
endplates were not detached from the rest of each
sample, leaving a VB-disc-VB specimen for each one,
which is a conventional method in uniaxial compressive
disc characterizations [25]. Since the covering vertebral
plates are signi�cantly sti�er compared to the IVD [18],
and the applied loads are too small to bring about
any deformation or fracture of the plates, the vertebral
plates are considered rigid, and thus, the recorded
force and displacement data are produced merely as a
result of the IVD's deformation. In addition, to ensure
exerting a pure axial compression, the top and bottom
surfaces of the sectioned vertebral bodies were carefully
placed and �xed parallel to the disc and the horizontal
planes by which the disc is reinforced, as suggested
by the literature [10]. The geometrical properties,
including the samples' initial lengths and their cross-
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sectional areas, were precisely measured before each
test using digital photography and computer imaging
(Figure 1(a)). Dimension calculations were carried out
using the sketch picture tools in SolidWorks 2017.
The initial lengths and cross-sectional areas of the
samples were calculated to be 5:02 � 1:43 mm and
389:41� 81:37 mm2, respectively.

2.2. Experimental setup and mechanical tests
All tests were carried out at room temperature by a
dynamic testing machine (Hct400/25), equipped with a
load cell having the least sensitivity of 0.0001 N, Zwick
Roell Group, Ulm, Germany (Figure 1(b)). Before
performing the tests, �ve loading and unloading cycles
(up to 4% strain amplitude with a frequency of 1.0
Hz) were applied to the samples as the preconditioning
phase to obtain reproducible results in the relaxation
tests and ensure the evaluation of the correct tissue's
characteristics. Also, the samples were kept wet by
spraying a physiological saline solution to prevent
tissue dehydration, which otherwise could cause the
samples' properties to change during the tests [25].
Additionally, the samples were set to rest in the saline
solution between each test for a duration su�ciently
longer than their relaxation time to recover their initial
con�guration.

In all tests, compressive and uniaxial initial loads
or displacements were applied. The relaxation set
of tests included three tests, either of which was
initiated by a constant displacement, thus starting
with three constant strain values (the inputs). The
strain amplitudes were set to be 4%, 8%, and 16%.
Load response data were obtained during the tissue
relaxation period for an aggregate number of 10000
data points in 300 seconds. It is noteworthy that since
it is physically impossible to apply the relaxation input
as a unit step function, a rise-time at the beginning

of data will always exist due to the impact nature
of the input strain. Since the rise-time contradicts
the assumptions on which the analytical calculations
are based, it may produce some errors. Therefore, to
diminish such e�ects, as a common method suggested
by the literature [16], the analysis was performed on the
data starting at a point ten times longer than the rise-
time period. In the relaxation tests, the response data
were force versus time points. The cross-sectional areas
of the samples were used to determine the engineering
stress for each sample. Finally, the stress values were
averaged at each time point, and the obtained \mean
stress versus time" data were �tted by viscoelastic
models.

In addition to the relaxation tests, uniaxial com-
pression with the constant strain rate of 4% s�1 was
exerted on the samples up to 600 N to study the
hyperelastic response of the IVD tissue based on the
available constitutive models. According to Kasra et
al. [26], the value of the strain rate in our experiment
is considered medium. Hence, it was low enough to
preclude impact loading. Therefore, it can successfully
capture and characterize the hyperelastic behavior of
the tissue. The geometrical measurements of each
sample at the beginning of the tests, along with the
incompressibility assumption for the IVD samples,
made it possible to calculate the \mean Cauchy stress
versus mean stretch" data from the load-displacement
records.

2.3. Viscoelastic modeling and formulations
We undertook a simple nonlinearity assessment using
an isochronal test beforehand. For doing this, the
mean stress-strain data were selected at ten di�erent
time points. If a linear function �ts the data well,
the acceptability of the linearity assumption will be
con�rmed.

Figure 1. (a) Measuring initial length and cross-sectional area of a sample. (b) A sample placed in the testing machine.
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Table 1. Stress functions of the viscoelastic models used in this study.

Viscoelastic model Status Stress function

Two-term Prony (PRO) model Linear �(t) = "0(E0 + E1e
�t
�1 )

Three-term Prony (PRO) model Linear �(t) = "0(E0 + E1e
�t
�1 + E2e

�t
�2 )

Fung's Quasi-Linear Viscoelastic (QLV) model Partly linear �("; t) = "0G(")tn

Modi�ed Superposition (MSP) model Nonlinear �("; t) = "0A(")tB(")

Figure 2. Standard linear solid model [21].

2.3.1. Linear viscoelastic models
As an introduction to linear viscoelasticity, the stan-
dard linear solid model with three parameters, illus-
trated in Figure 2, was selected [21], by which the nec-
essary formulations were derived. Using the standard
linear solid con�guration, the following di�erential
equation was obtained:

d�
dt

+
�
�

=
d"
dt

(E0 + E1) +
"E0

�
: (1)

Linear viscoelastic modeling is generally based on
Boltzmann superposition integral, which can be writ-
ten in the relaxation form as the following [21]:

�(t) =
Z t

0
E(t� �)

d"(�)
d�

d� ; (2)

where E(t) denotes the relaxation function, �(t) is the
stress response as a function of time, " refers to the
strain, and � is the integration variable.

Using the Boltzmann superposition integral, dif-
ferential Eq. (1) is solved and leads to the relaxation
function for the standard linear solid, which is found
to be a decreasing exponential as the following:

E(t) = E0 + E1e
�t
�r ; (3)

where �r is known as the relaxation time and is equal to
�=E1. Another way to achieve the relaxation function

for linear viscoelastic modeling in a more general sense
is by employing a PRO exponential series. As for the
relaxation function, the PRO series formulation results
in the following:

E (t) = E0 +
nX
i=1

Eie
�t
�i : (4)

We assumed a step function for the strain input (" (t) =
0 if t = 0 and " (t) = "0 if t > 0). To implementing
the PRO series, we got the following equation for the
linear viscoelasticity:

� (t) = "0

 
E0 +

nX
i=1

Eie
�t
�i

!
: (5)

The parameters of this model are E0, Ei, and �i,
which will be achieved by �tting this equation to the
stress relaxation data corresponding to each strain
level. Two- and three-term PRO series were used, and
the associated equations were listed in Table 1.

The Linear viscoelasticity assumption does not
allow any changes in the model parameters for di�erent
strain levels. Thus, in order to evaluate the predictabil-
ity of this model for the tissue, Eq. (5) was used to
�t the relaxation data from the average strain level.
Hence, the results gave the model parameters at the
average strain level. The obtained parameters were held
constant and used to �t Eq. (5) to each set of relaxation
data (from other strain levels) so as to quantify the
deviation of this model at each strain level from the
linearity assumption.

2.3.2. QLV theory
The theory of QLV was proposed by Fung [27], the
advantage of which is that the relaxation function
depends on strain as well as time. The separable
relaxation function (E("; t)) can be written in the form
below:
E ("; t) = G(")T (t): (6)

In Eq. (6), G and T are functions of strain and time,
respectively. With such a relaxation function, one can
reach the following integration:

� ("; t) = s t0 T (t� �)G (")
d�
d"
d" (�)
d�

d�: (7)

Again, a step function for the input strain was se-
lected and the following formulation for the stress was
achieved:
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� ("; t) = "0G (")T (t) : (8)

In this model, we assumed (T (t)=tn) in which n is
a constant, known as the rate of relaxation [16]. Since
T (t) is only a function of time, the coe�cient n does not
depend on the strain, and hence, it remains constant at
every stain level. This aids in evaluating the accuracy
of the model's predictability in di�erent strain levels.

2.3.3. MSP theory of nonlinear viscoelasticity
Similar to the QLV, the MSP theory proposes the
relaxation function as a function of both time and
strain. However, in this theory, the time and strain
contributions are not separable. The following integra-
tion is presented by this model [22]:

� ("; t) = s t0 T (t� �; " (�))
d" (�)
d�

d�: (9)

Using a power law, a formulation similar to the QLV
one is introduced. However, unlike in the QLV, the
exponent B(") is a function of strain.

E ("; t) = A (") tB("): (10)

The following stress formulation is obtained by apply-
ing the strain input as a step function:

� ("; t) = "0A (") tB("); (11)

A(") and B(") are functions of strain and are deter-
mined using the isochronal data along with the stress
relaxation data.

2.4. Hyperelastic modeling and formulations
The basic general measurement of the deformational
motion of a continuum element is the deformation
gradient. The material element dX at the reference
con�guration is mapped, by this motion, to the mate-
rial element dx at the new con�guration through the
deformation gradient tensor, F .

dx = FdX: (12)

Assuming the uniaxial load is applied in x1 direction,
the principal axes of deformation are the x1 direction
and the two perpendicular transverse directions (x2
and x3), shown in Figure 1(b).

dxi = �idXi i = 1; 2; 3; (13)

where �1, �2, and �3 are the principal stretches in
the x1, x2, and x3 directions. We imposed the
incompressibility condition (det (F ) = J = �1�2�3 =
1), which is reasonable, given that the NP holds a
high bulk modulus with a semiliquid structure. This
is the reason that the nucleus deforms laterally (in-
stead of compressing its volume) when loaded under
spinal vertical compressive forces. Additionally, the

AF is a soft tissue with high water content. Thus,
incompressibility was reported as a generally accepted
assumption for the hyperelastic modeling of such soft
tissues [12]. We also assumed the cross-sections of
the samples (perpendicular to the x1 direction) to be
symmetric (�2 = �3). Therefore, considering �1 = �,
we get:

F =

24 � 0 0
0 �� 1

2 0
0 0 �� 1

2

35 : (14)

Using Eq. (14), the right Cauchy-Green deformation
tensor is de�ned below:

c = FTF =

24 �2 0 0
0 ��1 0
0 0 ��1

35 : (15)

Now, the invariants of the right Cauchy-Green defor-
mation tensor are calculated as follows:

I1 = tr (c) = �2 +
2
�
;

I2 =
1
2

�
(tr (c))2 � tr �c2�� = 2�+

1
�2 ;

I3 = 1: (16)

These invariants and principal stretches are used to
express the strain energy function in the case of
isotropic hyperelastic materials. Therefore, the Cauchy
stress expressions can be de�ned as a function of the
strain invariants and the principal stretches. The
choice of each approach generally depends on the form
of the strain energy density function, W . For instance,
the Cauchy stress expressions as a function of the
principal stretches for incompressible materials given
by Ogden [2] are as below:

�i = �i
@W
@�i
� p; i = 1; 2; 3; (17)

where p is the hydrostatic pressure and is determined
by the boundary conditions. However, by the following
subtraction, we get:

�1 � �2 = �1
@W
@�1
� �2

@W
@�2

: (18)

Since our experiment was based on simple uniaxial
compression tests (�1 = �; �2 = �3 = 0), the following
is obtained for the Cauchy stress dependency on the
stretch values:

� = �1
@W
@�1
� �2

@W
@�2

: (19)
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Below is another form of Cauchy stress, which is
written using the strain invariants [12]. This equation
can be derived from Eq. (19) using Eq. (16), the
incompressibility assumption, and the uniaxial loading
condition:

� = 2
�
�2 � 1

�

��
@W
@I1

+
1
�
@W
@I2

�
: (20)

In the last two equations, W is substituted by sev-
eral expressions that were previously suggested in the
literature. To make this approach more clear, one
general form of the strain energy density function for
hyperelastic materials, known as the Rivlin expression,
is shown here by the following series [28].

W =
1X

i;j;k=0

Cijk(I1 � 3)i(I2 � 3)j(I3 � 1)k: (21)

Note that C000 = 0 because the strain energy must
be zero in the undeformed con�guration. Also, recall
that in the problem of incompressible materials, I3=1.
Therefore, keeping the �rst terms of the Rivlin expres-
sion, Eq. (22) is written as below:

W = C10 (I1 � 3) + C01 (I2 � 3) : (22)

The above equation is known as the Mooney-Rivlin
model. Similarly, Table 2 presents a list of several
strain energy density functions for incompressible and
isotropic hyperelastic materials, which have been pre-
viously used for many biological cartilaginous and soft
tissues in the literature [29,30].

Now, noting that our experiments were performed
as uniaxial compression tests, the Cauchy stress for the
Mooney-Rivlin model can be calculated using Eq. (20):

� = 2
�
�2 � 1

�

��
C10 +

C01

�

�
: (23)

The same approach is applicable to other strain energy
density functions in Table 2. By the use of Eqs. (19)
and (20), the resultant Cauchy stress expressions of
each strain energy density function were calculated for
the uniaxial compressive test and listed in Table 3.
Since our work involves the compression zone, the
stress values must remain negative and be an increasing
function of stretch [28].

3. Results and discussion

The results of this study were obtained based on
considering the IVD tissue as a unit structure. In
hyperelastic and viscoelastic modeling of the IVD,
some authors have already considered the entire tissue
as a homogenous and isotropic body. They reported
material properties to characterize the tissue as a
whole, using force-displacement or stress-strain graphs
[10,17,19,24]. One reason for such simpli�cation is the
di�culty in modeling the 
uid movement in the NP,
AF, and between the two components when dividing
up the disc. In addition, the orthotropic assumption
will increase the material constants and complicate the
viscoelastic analysis. Yang et al. [10] measured the
homogenized \e�ective modulus" to characterize the

Table 2. Strain energy density expressions as a function of strain invariants and principal stretches.

Model Strain energy density function

Mooney Rivlin W = C1(I1 � 3) + C2(I2 � 3)
Neo-Hookean W = C1(I1 � 3)
Fung W = C1

2C2
(eC2(I1�3) � 1)

Yeoh W = C1(I1 � 3) + C2(I1 � 3)2 + C3(I1 � 3)3

Ogden W = C1
C2

(�C2
1 + �C2

2 + �C2
3 � 3) + C3

C4
(�C4

1 + �C4
2 + �C4

3 � 3) + C5
C6

(�C6
1 + �C6

2 + �C6
3 � 3)

Humphrey W = C1(eC2(I1�3) � 1)
Veronda-Westman W = C1(eC2(I1�3) � 1)� C1C2

2 (I2 � 3)

Table 3. Cauchy stress formulation of the hyperelastic models as a function of strain invariants and principal stretches.

Model Cauchy stress expression

Mooney-Rivlin � = (�2 � 1
� )(C1 + C2

� )
Neo-Hookean � = 2C1(�2 � 1

� )
Fung � = C1(�2 � 1

� )eC2(I1�3)

Yeoh � = 2(�2 � 1
� )(C1 + 2C2(I1 � 3) + 3C3(I1 � 3)2)

Ogden � = C1(�C2 � ��C2
2 ) + C3(�C4 � ��C4

2 ) + C5(�C6 � ��C6
2 )

Humphrey � = 2C1C2(�2 � 1
� )eC2(I1�3)

Veronda-Westmann � = 2C1C2(�2 � 1
� )(eC2(I1�3) � 1

2� )
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average mechanical behavior of the disc tissue as a
whole. Such simpli�cations greatly aid in the analysis,
especially in studies with a large number of models
being examined, such as in our work. The results can
help obtain the stress or displacement pro�les through
the entire IVD structure and simplify the numerical
use of the tissue's behavior in large-scale �nite element
simulations of a motion segment or the whole vertebral
column in static and dynamic analyses.

3.1. Viscoelastic modeling results
Having the geometrical properties of the samples,
the mean engineering stress and strain values were
calculated from the force and displacement recorded
data. The mean stress values against the relaxation
time were plotted for each strain level in Figure 3(a).
The overall pro�le of the relaxation plots with our three
strain levels correlated well with the three relaxation
plots in the study of Ellingson and Nuckley [18] (Figure
3(b)). The general shape of the plots also had a good
consistency with those in the literature performing the
same tests on other viscoelastic biological soft tissues
[5,16].

To assess the level of linearity of the viscoelastic
behavior of the IVD tissue, mean isochronal stress-
strain data were achieved at ten di�erent time points.
The time points were (5.5, 12, 20, 30, 60, 100, 150, 180,
210, and 270 s). None of the mean stress-strain data
of these time points could be �tted by a straight line,
as can be seen in Figure 4. However, R2 values were
1.00 for all the nonlinear polynomial functions �tted
to the data (results not shown here). The mentioned
�ndings indicated that if the strain level is changed,
the stress response cannot be predicted by a linear
function. Hence, the nonlinear viscoelasticity behavior
of the IVD tissue was substantiated.

3.1.1. Linear viscoelasticity results
Two- and three-term PRO series were used to model
the viscoelastic behavior of the IVD roughly. First,

Figure 4. Mean isochronal stress-strain data at ten
di�erent time points.

Eq. (5) was �tted to each set of experimental data
separately. These measures were taken for both two-
and three-term PRO models. Tables 4 and 5 list
the obtained parameters of each linear model and the
R2 values for di�erent strain levels. Afterward, only
the parameters obtained from the average strain level
(9.3%) were used to make the main linear constitutive
expression for relaxation, which is used to evaluate the
predictability of the linear viscoelasticity assumption.
To do this, the main constitutive expression, which is
obtained using the parameters from the average strain
data (9.3%), was �tted to the relaxation data corre-
sponding to each strain level separately. The deviation
of this model from the experimental relaxation data
at each strain level was presented by the standard
deviation parameter, which was then used to calculate
the coe�cient of determination, R2.

According to Tables 4 and 5, both PRO models
could �t the experimental data with high R2 values for
all the stain levels. Therefore, the linear viscoelastic

Figure 3. (a) The mean stress data versus the relaxation time at each strain level in this study. (b) Stress relaxation
results at three strain levels in the study of Ellingson and Nuckley [18].
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Table 4. Obtained parameters of the three-term PRO model at di�erent strain levels.

Strain level (%) E0 (MPa) E1 (MPa) E2 (MPa) �1 (s) �2 (s) R2

4 1.328 2.058 0.6617 206.9 24.2 0.9702
8 2.342 2.14 0.7773 390.7 42.65 0.9826
16 5.184 5.266 2.02 176.9 14.45 0.9818

Average (= 9.3) 3.944 1.346 3.843 17.75 188.5 0.9886

Table 5. Obtained parameters of the two-term PRO model at di�erent strain levels.

Strain level (%) E0 (MPa) E1 (MPa) �1 (s) R2

4 1.676 2.116 122.3 0.9658
8 3.198 1.92 129.3 0.9792
16 5.847 5.412 117.5 0.9749

Average (= 9.3) 4.495 3.942 119.4 0.9826

model successfully captures the time dependency of
the IVD's mechanical response at each strain level
separately. However, the three-term PRO model
produced a slightly better �t due to the higher number
of coe�cients. Besides, it should be noted that the �rst
parameter of each model, which is E0 and represents
the largest share of elasticity, was increased with the
strain level. More generally speaking, the sum of elastic
parameters, Ei, increased by growing the strain level.
This is because at t = 0, the parameters controlling
the viscosity e�ect act as rigid elements. Hence, it
allows the elements of elasticity to be proportional to
the initial strain.

The parameters of both PRO models did not
remain constant when the strain level was changed.
This demonstrated the dependency of such parameters
on the strain level and approved the insu�ciency of
the linear viscoelasticity assumption for the IVD tissue,
as was shown in the nonlinearity assessment using the
isochronal data. Therefore, consistent with the �ndings
of Groth and Granata [19], for capturing the IVD's
phenomenological behavior, nonlinear models should
be used.

3.1.2. QLV model
A QLV model was applied to the mean experimental
relaxation data of the IVD samples. Table 6 shows
the calculated parameters of this model at each strain
level. The parameter n was obtained for di�erent

Table 6. Obtained parameters of the QLV model at
di�erent strain levels.

Strain level (%) G(") n R2

4 6.495 �0:2081 0.912
8 7.083 �0:1248 0.935
16 17.67 �0:1751 0.9398

Average (= 9.3) 13.01 �0:1679 0.945

values of each strain level. Therefore, this parameter
was taken from the average strain level data (9.3%) and
applied to the main QLV constitutive expression, which
was used to quantify the deviation of this model from
the corresponding set of experimental data at other
strain levels. This method was described by previous
studies to assess the model's predictability [16]. This
approach is also equivalent to what we used for the
linear viscoelastic model to obtain its predictability in
other strain levels. The results of the QLV model are
also listed in Table 7 for comparison with other models
and plotted in Figures 5 and 6.

3.1.3. MSP theory
Finally, the MSP theory was used as a nonlinear model
of the IVD tissue. The parameters of the MSP model
were found by �tting Eq. (11) to the experimental
relaxation data at each strain level. The results are

Figure 5. Predicted response of the QLV and the MSP
models with the mean experimental data by 4% and 8%
strain inputs.
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Table 7. Obtained strain-dependent parameters and R2 values of each viscoelastic model at di�erent strain levels.

Strain level (%) Model
Obtained strain

dependent
parameters

R2

4

Two-term PRO { �44:0905
Three-term PRO { �44:1143

QLV G = 5:428 0.8717

MSP G = 6:495 0.9121
n = �0:2081

8

Two-term PRO { �18:2065
Three-term PRO { �18:2311

QLV G = 8:6 0.8034

MSP G = 7:083 0.9352
n = �0:1248

16

Two-term PRO { �1:0434
Three-term PRO { �1:0355

QLV G = 17:11 0.9379

MSP G = 17:67 0.9398
n = �0:1751

Figure 6. Predicted response of the QLV and the MSP
models with the mean experimental data by 16% strain
input.

not listed here because the obtained parameters were
identical to those of the QLV model at the matching
strain levels (see Table 6). However, one could not
change the exponent, n, at di�erent strain levels in
the QLV expression. This inherent feature of the QLV
model disabled this model to predict the tissue's accu-
rate response at di�erent strain levels. However, in the
MSP model, both parameters were strain-dependent
and able to change with the strain level. Therefore,
we assigned second-order polynomials, suggested by

the literature [16], in Eq. (11) for A(") and B(")
to predict the parameter's dependency on the strain
level. Implementing the three relaxation sets of the
mean stress-strain data, A and B were found to be:
A (") = 980:3"2 � 102:9"+ 9:044 and (") = �22:59"2 +
4:794" � 0:3637 in which R2 values were 1.00. The
accuracy of this model's prediction at di�erent strain
levels is presented by R2 values listed in Table 7.
Additionally, Table 7 lists the predicted parameters
by this method for all the viscoelastic models used in
this study. According to Table 7, the MSP model was
the most accurate one to obtain the tissue's response
at di�erent strain levels. This is due to its ability to
take into account a relaxation function that is both
time- and strain-dependent. Also, the predictability of
this model seemed to be improving when the strain
level was increased. On the other hand, the QLV
model gave lower R2 values as it predicted the same
relaxation rate parameter, n, for all strain levels. It
is also notable that the QLV's best prediction was at
the strain level of 16%, where its constant parameter,
n, was very close to the same parameter predicted by
the MSP model at the 16% strain level. The quality
of curve �tting can be observed in Figures 5 and 6.
The least reliable prediction was for the PRO models
in which no di�erences in the responses between the
various strain inputs were re
ected by the parameters.
Negative R2 values in Table 7 mean that the linear
models did not follow the trend of the experimental
data of other strain levels, even though the models'
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constant parameters were obtained by the mean data
from the average strain level. This proves the fact that
the viscoelastic behavior of the IVD tissue is nonlinear,
and the parameters obtained from the linear models
cannot be used to describe this tissue in relaxation tests
at other strain levels.

3.2. Hyperelastic modeling results
Uniaxial compressive load with the constant strain rate
of 4% s�1 was carried out on the IVD samples to
characterize the hyperelastic behavior of the tissue.
Figure 7 shows the mean stress-stretch plot resulting
from the force-displacement recorded data. It is
evident from the stress-stretch curve that the IVD
tissue displays sti�ening behavior in compression. This
trend was observed in the other studies examining the
IVD under uniaxial compression [1,6]. Yahyaiee et
al. [15] compared several hyperelastic models for the
IVD tissue under physiological loads. The results of
their �nite element simulation revealed that the Yeoh
model had the best consistency with the experimental

Figure 7. Mean Cauchy stress versus the mean stretch
(�) data obtained from the constant strain rate
experiment.

data. This �nding was also reported by Martins
et al. [12]. On the other hand, the Neo-Hookean
expression, which was the only single-parameter model,
failed to properly �t the experimental data in com-
parison with other models, which was again consistent
with the study of Yahyaiee et al. [15] and Martins et
al. [12].

In this study, several hyperelastic models were
�tted to the mean stress-strain curve from the exper-
imental data. The suitability of the �t is quanti�ed
by the values of the coe�cient of determination, R2,
which were calculated for each �tting model. The best
model for the hyperelastic behavior of the IVD tissue
was selected based on the R2 values. Table 8 lists
the resultant R2 values and the calculated parameters
of each hyperelastic model. Yeoh, Mooney-Rivlin,
and Ogden models had the closest R2 values to 1.00,
respectively.

Figure 8 exhibits the experimental data and the
�tted curves of the models with stress functions in
terms of stretches, i.e., Mooney-Rivlin, Ogden, and
Neo-Hookean. It is apparent that the Neo-Hookean
expression, which was the only single-parameter model,
failed to properly �t the experimental data in compar-
ison with other models, which was consistent with the
study of Yahyaiee et al. [15] and Martins et al. [12].
In Figure 9, models with stress functions dependent
on both the stretches and the �rst invariants (Yeoh,
Veronda-Westmann, Fung, and Humphrey) are shown.
Also, the residue of each model's prediction with the
experimental data can be observed. Based on Figure 9,
Fung and Humphrey's models yielded the same plots
and R2 values. In this group, the Yeoh model could
best describe the hyperelastic response of the IVD
tissue, consistent with the studies of Yahyaiee et al.
[15] and Martins et al. [12].

The results of this part can be helpful to those
seeking the best-describing models for IVD. Addition-
ally, our �ndings provide future researchers with the
mechanical parameters needed in the tissue models
and simulations. This study can be taken up by

Table 8. R2 values and the calculated parameters of the hyperelastic models used in this study.

Model R2 C1 C2 C3 C4 C5 C6

Mooney-Rivlin 0.9992 �0:01333 0.01385 { { { {

Yeoh 0.9993 0.0005331 0.008229 �0:01575 { { {

Fung 0.9966 0.001363 11.43 { { { {

Neo-Hookean 0.8967 0.001129 { { { { {

Humphrey 0.9966 5.959e-05 11.43 { { { {

Ogden 0.9990 3.76 0.08065 3.483 0.07991 �2:085 0.2784

Veronda-Westmann 0.997 0.000185 7.439 { { { {
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Figure 8. (a) Mooney-Rivlin, (b) Ogden, and (c) Neo-Hookean hyperelastic models �tted to the experimental data.

Figure 9. (a) Yeoh, (b) Veronda-Westmann, and (c) Fung and Humphrey hyperelastic models �tted to the experimental
data.

researchers who need to have a properly characterized
model, either hyperelastic or viscoelastic, based on the
nature of their research. Future investigations can
combine the best-�tting models in each group (Yeoh's
hyperelastic model and MSP nonlinear viscoelastic
model, for example) and study the hyper-viscoelastic
behavior of the IVD.

4. Conclusion

In this study, ten samples of ovine cervical Inter-
vertebral Discs (IVDs) were subjected to uniaxial
compression to characterize the mechanical properties
of this tissue. Relaxation tests with three di�erent

strain levels were performed on the samples. Three
viscoelastic constitutive models with linear, quasi-
linear, and nonlinear behavior were �tted to the mean
Cauchy stress-time data from the experiments. In
addition, a compressive load with a constant strain rate
was applied to the IVD tissue samples for hyperelastic
modeling. The mean Cauchy stress against the corre-
sponding strain data was obtained and �tted by seven
hyperelastic constitutive models, assuming isotropy
and incompressibility of the tissue. The parameters
of all the hyperelastic and viscoelastic models in this
study were calculated and reported. Our �ndings can
add to a growing body of literature on IVD mechanical
characterization and shed light on the tissue's nonlinear
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behavior. This study has led us to conclude the
following:

� The MSP model, featuring a time- and strain-
dependent relaxation function, was the most accu-
rate model to obtain the viscoelastic response of the
IVD at di�erent strain levels;

� The Quasi-Linear Viscoelastic (QLV) model could
predict the overall viscoelastic behavior of the IVD
at di�erent strain levels with acceptable accuracy;

� Linear viscoelastic models intrinsically fail to predict
the IVD response at di�erent strain levels. Thus,
it was approved that the IVD viscoelastic behavior
is not linear and must be delivered by a nonlinear
model described here or in the literature;

� Yeoh, Mooney-Rivlin, and Ogden's models could �t
the experimental data with the highest quality and,
hence, best describe the hyperelastic behavior of the
IVD tissue.
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Nomenclature

A(") Strain-dependent parameter of the
relaxation function in MSP model

B(") Strain-dependent exponent of the
relaxation function in MSP model

C Right Cauchy-Green deformation
tensor

Ci Constant parameters of stress functions
for hyperelastic material models

Cijk Constant parameters of Rivlin strain
energy density function

dx Material element at the new
con�guration (mm)

dxi Material element at the new
con�guration in x1 direction (mm)

dX Material element at the reference
con�guration (mm)

dXi Material element at the reference
con�guration in x1 direction (mm)

E Spring sti�ness (MPa)
E0 Spring sti�ness of the Maxwell arm in

the standard linear solid model (MPa)
E1 Sti�ness of spring 1 in the standard

linear solid model (MPa)
E2 Sti�ness of spring 2 in the standard

linear solid model (MPa)
Ei Sti�ness parameter of the standard

linear solid model (MPa)
E(t) Relaxation function (MPa)
F Deformation gradient tensor
G(") Strain-dependent parameter of the

separable relaxation function in the
QLV model

I1 First invariant of the right Cauchy-
Green deformation tensor

I2 Second invariant of the right Cauchy-
Green deformation tensor

I3 Third invariant of the right Cauchy-
Green deformation tensor

J Determinant of the deformation
gradient tensor

n Rate of relaxation
P Hydrostatic pressure (MPa)

R2 Coe�cient of determination (R-
squared)

t Time (s)
T (t) Time-dependent parameter of the

separable relaxation function in the
QLV model

W Strain energy density function (MPa)
" Strain
"0 Constant strain input
"(t) Strain function
� Dashpot viscosity (MPa.s)
� Principal stretch in the x1 direction
�i Principal stretches in the xi direction
� Stress (MPa)
�i Cauchy stress tensor (MPa)
�(t) Stress response as a function of time

(MPa)
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� Time variable of Boltzmann
superposition integral (s)

�1 Relaxation time parameter of spring 1
and dashpot 1 (s)

�2 Relaxation time parameter of spring 2
and dashpot 2 (s)

�i Relaxation time parameters (s)
�r Relaxation time (s)
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