References:
1. Sprott, J.C. "A proposed standard for the publication of new chaotic systems”, International Journal of Bifurcation and Chaos, 21(09), pp. 2391-2394 (2011). https://doi.org/10.1142/S021812741103009X.
2. Xu, G., Shekofteh, Y., Akgül, A., et al. "A new chaotic system with a self-excited attractor: entropy measurement, signal encryption, and parameter estimation”, Entropy, 20(2), p. 86 (2018). https://doi.org/10.3390/e20020086.
3. Wang, C., Zhou, L., and Wu, R. "The design and realization of a hyper-chaotic circuit based on a fluxcontrolled memristor with linear memductance”, Journal of Circuits, Systems and Computers, 27(03), 1850038 (2018). https://doi.org/10.1142/S021812661850038X.
4. Liang, H., Wang, Z., Yue, Z., et al. "Generalized synchronization and control for incommensurate fractional unified chaotic system and applications in secure communication”, Kybernetika, 48(2), pp. 190- 205 (2012). http://eudml.org/doc/246442.
5. Zhou, M. and Wang, C. "A novel image encryption scheme based on conservative hyperchaotic system and closed-loop diffusion between blocks”, Signal Processing, 171, 107484 (2020). https://doi.org/10.1016/j.sigpro.2020.107484.
6. Cheng, G., Wang, C., and Xu, C., "A novel hyperchaotic image encryption scheme based on quantum genetic algorithm and compressive sensing”, Multimedia Tools and Applications, 79(39), pp. 29243- 29263 (2020). https://doi.org/10.1007/s11042-020-09542-w.
7. Deng, J., Zhou, M., Wang, C., et al. "Image segmentation encryption algorithm with chaotic sequence generation participated by cipher and multifeedback loops”, Multimedia Tools and Applications, 80(9), pp. 13821-13840 (2021). https://doi.org/10.1007/s11042-020-10429-z.
8. Wang, Z., Wei, Z., Sun, K., et al. "Chaotic flows with special equilibria”, The European Physical Journal Special Topics, 229(6), pp. 905-919 (2020). https://doi.org/10.1140/epjst/e2020-900239-2.
9. Wei, Z., Wang, R., and Liu, A. "A new finding of the existence of hidden hyperchaotic attractors with no equilibria”, Mathematics and Computers in Simulation, 100, pp. 13-23 (2014). https://doi.org/10.1016/j.matcom.2014.01.001.
10. Wei, Z. and Zhang, W. "Hidden hyperchaotic attractors in a modified Lorenz–Stenflo system with only one stable equilibrium”, International Journal of Bifurcation and Chaos, 24(10), 1450127 (2014). https://doi.org/10.1142/S0218127414501272.
11. Danca, M.-F., Bourke, P., and Kuznetsov, N. "Graphical structure of attraction basins of hidden chaotic attractors: The Rabinovich–Fabrikant system”, International Journal of Bifurcation and Chaos, 29(01), 1930001 (2019). https://doi.org/10.1142/S0218127419300015.
12. Danca, M.-F., Kuznetsov, N., and Chen, G. "Unusual dynamics and hidden attractors of the Rabinovich– Fabrikant system”, Nonlinear Dynamics, 88(1), pp. 791-805 (2017). https://doi.org/10.1007/s11071-016-3276-1.
13. Danca, M.-F. and Kuznetsov, N. "Hidden strange nonchaotic attractors”, Mathematics, 9(6), 652 (2021). https://doi.org/10.3390/math9060652.
14. Danca, M.-F. "Coexisting hidden and self-excited attractors in an economic model of integer or fractional order”, International Journal of Bifurcation and Chaos, 31(04), 2150062 (2021). https://doi.org/10.1142/S0218127421500620.
15. Bao, H., Hua, Z., Li, H., et al. "Discrete memristor hyperchaotic maps”, IEEE Transactions on Circuits and Systems I: Regular Papers, 68(11), pp. 4534-4544 (2021). https://doi.org/10.1109/TCSI.2021.3082895.
16. Zhou, L., Wang, C., and Zhou, L. "A novel noequilibrium hyperchaotic multi‐wing system via introducing memristor”, International Journal of Circuit Theory and Applications, 46(1), pp. 84-98 (2018). https://doi.org/10.1002/cta.2339.
17. Li, C., Hu, W., Sprott, J.C., et al. "Multistability in symmetric chaotic systems”, The European Physical Journal Special Topics, 224(8), pp. 1493-1506 (2015). https://doi.org/10.1140/epjst/e2015-02475-x.
18. Wang, N., Li, C., Bao, H., et al. "Generating multi-scroll Chua’s attractors via simplified piecewise-linear Chua’s diode”, IEEE Transactions on Circuits and Systems I: Regular Papers, 66(12), pp. 4767-4779 (2019). https://doi.org/10.1109/TCSI.2019.2933365.
19. Lai, Q. and Chen, S. "Generating multiple chaotic attractors from Sprott B system”, International Journal of Bifurcation and Chaos, 26(11), 1650177 (2016). https://doi.org/10.1142/S0218127416501777.
20. Xu, Q., Liu, T., Feng, C.-T., et al. "Continuous nonautonomous memristive Rulkov model with extreme multistability”, Chinese Physics B, 30(12), 128702 (2021). https://doi.org/10.1088/1674-1056/ac2f30.
21. Feudel, U. and Grebogi, C. "Why are chaotic attractors rare in multistable systems?”, Physical Review Letters, 91(13), 134102 (2003). https://doi.org/10.1103/PhysRevLett.91.134102.
22. Marmillot, P., Kaufman, M., and Hervagault, J.F. "Multiple steady states and dissipative structures in a circular and linear array of three cells: Numerical and experimental approaches”, The Journal of Chemical Physics, 95(2), pp. 1206-1214 (1991). https://doi.org/10.1063/1.461151.
23. Meucci, R., Marc Ginoux, J., Mehrabbeik, M., et al. "Generalized multistability and its control in a laser”, Chaos: An Interdisciplinary Journal of Nonlinear Science, 32(8), 083111 (2022). https://doi.org/10.1063/5.0093727.
24. Hammel, S., Jones, C., and Moloney, J.V. "Global dynamical behavior of the optical field in a ring cavity”, JOSA B, 2(4), pp. 552-564 (1985). https://doi.org/10.1364/JOSAB.2.000552.
25. Canavier, C., Baxter, D., Clark, J., et al. "Nonlinear dynamics in a model neuron provide a novel mechanism for transient synaptic inputs to produce long-term alterations of postsynaptic activity”, Journal of Neurophysiology, 69(6), pp. 2252-2257 (1993). https://doi.org/10.1152/jn.1993.69.6.2252.
26. Prengel, F., Wacker, A., and Schöll, E. "Simple model for multistability and domain formation in semiconductor superlattices”, Physical Review B, 50(3), p. 1705 (1994). https://doi.org/10.1103/PhysRevB.50.1705.
27. Bao, B., Jiang, T., Xu, Q., et al. "Coexisting infinitely many attractors in active band-pass filter-based memristive circuit”, Nonlinear Dynamics, 86(3), pp. 1711-1723 (2016). https://doi.org/10.1007/s11071-016-2988-6.
28. Li, C., Sprott, J.C., Hu, W., et al. "Infinite multistability in a self-reproducing chaotic system”, International Journal of Bifurcation and Chaos, 27(10), 1750160 (2017). https://doi.org/10.1142/S0218127417501607.
29. Li, C., Thio, W. J.-C., Sprott, J.C., et al. "Constructing infinitely many attractors in a programmable chaotic circuit”, IEEE Access, 6, pp. 29003-29012 (2018). https://doi.org/10.1109/ACCESS.2018.2824984.
30. Karami, M., Ramakrishnan, B., Hamarash, I.I., et al. "Investigation of the simplest megastable chaotic oscillator with spatially triangular Wave Damping”, International Journal of Bifurcation and Chaos, 32(07), 2230016 (2022). https://doi.org/10.1142/S0218127422300166.
31. Ramakrishnan, B., Ahmadi, A., Nazarimehr, F., et al. "Oyster oscillator: a novel mega-stable nonlinear chaotic system”, The European Physical Journal Special Topics, pp. 1-9 (2021). https://doi.org/10.1140/epjs/s11734-021-00368-7.
32. Tang, Y., Abdolmohammadi, H.R., Khalaf, A.J.M., et al. "Carpet oscillator: A new megastable nonlinear oscillator with infinite islands of self-excited and hidden attractors”, Pramana, 91(1), pp. 1-6 (2018). https://doi.org/10.1007/s12043-018-1581-6.
33. Kahn, P.B. and Zarmi, Y., Nonlinear Dynamics: Exploration Through Normal Forms, Courier Corporation (2014).
34. Wolf, A., Swift, J.B., Swinney, H.L., and Vastano, J.A. "Determining Lyapunov exponent from a time series", Physica D., 16, pp. 285-317 (1985). https://doi.org/10.1016/0167-2789(85)90011-9.
35. Karami, M., Ramamoorthy, R., Ali, A.M.A., et al. "Jagged-shape chaotic attractors of a megastable oscillator with spatially square-wave damping”, The European Physical Journal Special Topics, Springer, 231(11), pp. 2445-2454 (2022). https://doi.org/10.1140/epjs/s11734-021-00373-w.
36. Wang, Z., Hamarash, I.I., Shabestari, P.S., et al. "A new megastable oscillator with rational and irrational parameters”, International Journal of Bifurcation and Chaos, 29(13), 1950176 (2019). https://doi.org/10.1142/S0218127419501761.