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In this paper, a megastable system is designed with particular formation of attractors. It 

has two formations of attractors: the inner ones with a smaller amplitude, and the outer 

ones with the Eye of God nebula shape and larger amplitude. To the best of our 

knowledge, such a megastable oscillator with this special formation of attractors has 

not been studied before. Afterward, the oscillator is forced, and its attractors are 

discussed. Different dynamics of this new oscillator are investigated using tools such as 

bifurcation and Lyapunov exponent diagram, and basins for each attractor.  

Keywords: Megastable oscillator; forced system; chaos; bifurcation analysis; 

multistability. 

1. Introduction 

Presenting novel chaotic oscillators with unique features has been a controversial 

subject [1-3] in the field of nonlinear dynamics and chaos. Such oscillators have many 

applications, such as secure communications [4], and image encryption [5-7]. 

Regarding the special features, oscillators with different types of equilibria has been 

considerably investigated [8], such as oscillators without any equilibria [9] and 

oscillators with a single stable equilibrium [10]. Many of such oscillators are systems 

with hidden attractors [11]. An existing categorization of dynamical systems is 
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dividing them to self-excited and hidden attractors [12-14]. Another critical 

characteristic of chaotic oscillators is the topology of their strange attractor [15, 16]. As 

an example one can mention new chaotic oscillators with different types of symmetry 

[17], and with multi-scroll attractors [18].  

A multistable oscillator is a system that has coexisting attractors regarding the initial 

conditions (ICs) [19, 20]. The state of a multistable oscillator can be different for 

various ICs according to the attractors’ basin of attraction. The multistable 

phenomenon is widespread in the nature and real-world systems [21] such as the 

catalysis of linear arrays of three cells in chemistry [22], lasers [23], and optics [24]. 

Also, multistability has been seen in neuronal models which mimic the behavior of real 

neurons [25], as well as different disciplines of physics, like semiconductors [26]. 

Various types of multistability have been investigated, such as extreme multistable 

oscillators [27] and megastable oscillators [28, 29]. Various megastable oscillators 

have been studied recently. A simple megastable oscillator with a triangular term was 

discussed in [30]. In [31], a megastable oscillator with oyster-like dynamics was 

proposed. In [32], a carpet-like magastable oscillator with only sinusoidal terms was 

investigated. It can be seen that the formation of attractors in megastable oscillators is a 

core in such researches. Therefore, this paper focuses on proposing a megastable 

oscillator with a unique attractors’ formation. A comparison of the proposed oscillator 

with the previous ones is shown in Table 1.  

Here, a megastable two-dimensional oscillator is designed. By forcing the oscillator, its 

chaotic dynamics and their bifurcations are discussed. The infinite attractors include 

cyclic attractors and strange attractors in various parameters. The oscillator has two 

types of attractors, the inner attractors with smaller amplitudes and the outer ones with 

larger amplitudes, like the Eye of God nebula. The 2D oscillator is proposed in the next 

section, and its attractors are discussed. Then, applying a forcing term, the new 

attractors are studied. In Section 3, the forced oscillator is analyzed through its 

bifurcations and Lyapunov exponents regarding different coexisting attractors. 

Eventually, the conclusion is stated in Section 4.   
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2. Proposed Oscillator 

Here, a two-dimensional megastable oscillator is proposed as follows: 
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The system is designed based on a simple megastable system [33]. The new system is 

constructed by varying and adding some terms to the oscillator and using a vast search 

to find the megastable dynamics. The proposed oscillator has an equilibrium point at 

(0,0) . By using the stability analysis method, the Jacobian matrix of Equation (1) at 

the fixed point is: 
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The characteristic equations are: 
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The eigenvalues are 1 20.9, 0.1   . Since both eigenvalues are positive, the equilibrium point 

is unstable. So, it repels all the nearby trajectories. Figure 1 shows the coexisting limit cycles for 

various ICs. The oscillator has two groups of coexisting limit cycles. The first group is the four 

inner attractors, plotted in part (a) of Fig. 1. They are plotted by nine ICs as 0[ ,0]x  where 

0 0.8889 ,1.7778 ,2.6667 ,3.5556 ,4.4444 ,5.3333 ,6.2222 ,7.1111 ,8x          .The second 

group is the outer and larger attractors. Three of these attractors are plotted in part (b) of Fig. 1. 

The ICs of these attractors are 0[ ,0]x  where 0 8.5 ,28.875 ,49.25 ,69.6250 ,90x      . The 

second group limit cycles have oscillations with larger amplitude, and they are like the Eye of 

God's nebula. They need more run time, and more transient time should be removed. The first 

group limit cycles are plotted with rum time 4000, and the transient half of it is neglected. The 
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second group limit cycles are calculated by run time  60000, and 0.8  of the time series are 

removed as transient time.  

Then, by adding periodically forced term sin( 3 )A t  to the system (1), we have:  
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Equation (4) can show more complex dynamics by adding the periodically forcing 

term. Figure 2 shows the dynamics of Equation (4) with ICs the same as Fig. 1 and 

2.7A . Figure 2a shows the attractors with ICs in the interval 0 0[0,8 ], 0x y  . The 

figure shows that some of the four inner attractors became chaotic with 2.7A . 

Figure 2b presents the outer attractors with ICs in the interval 0 0[8.5 ,90 ], 0x y   . 

It seems that the three attractors are not chaotic in 2.7A .  

3. The forced system’s dynamics 

To study the dynamics of the Equation (4), the evolution of the attractors is 

investigated using the bifurcation diagrams. A  is considered a bifurcation parameter. 

The bifurcation diagram and Lyapunov spectrums are presented in Figure 3. Figure 3a 

and 3b show the bifurcation and Lyapunov of the largest attractor in the inner group, 

with the constant ICs [ 7.5 ,0] . Figure 3a shows the bifurcation plot for the variable 

y  of the Equation (4). By changing the bifurcation parameter A , the system shows 

different dynamics like quasiperiodic, chaotic, and periodic attractors regarding the 

bifurcation diagram in Fig. 3a. The largest Lyapunov exponent is plotted in green in 

Fig. 3b. The positive largest Lyapunov means that the system presents chaotic 

dynamics. Using Wolf's method, the Lyapunov exponents are approximated [34] with 

the run-time 20000. 

Figure 4 demonstrates the bifurcation plot and Lyapunov exponents of the Equation (4) 

by changing the IC of x  in the interval 0 [0,40]x  . The parameter A  is set constant to 

2.6. Figure 4a presents the dynamics of the logarithm of the y ’s maxima by varying 
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0x . The set of ICs is considered as 
0[ ,0]x . Figure 4b shows the largest Lyapunov 

exponent. The figure illustrates the basin of attractions of different attractors in the 
0x  

domain. The oscillator shows different strange attractors for the interval 

0 [3.87,25.88]x  . To study the Equation (4) dynamics in different ranges, seven 

attractors with the selected ICs are plotted in Fig. 5.  

To investigate the basin of different attractors in 2D, Fig. 6 is plotted. The basin of the 

four inner attractors is plotted in four colors (cyan, yellow, purple, and black). The 

white color shows the uninvestigated region of the basin of attraction. 

4. Conclusion 

A new megastable oscillator was introduced. Various dynamics of the oscillator were 

discussed. In addition, the oscillator was studied by adding a periodically forcing term. 

Various periodic and chaotic attractors of the oscillator were analyzed through its 

attractors plot, bifurcation plot and Lyapunov exponent diagrams. The evolution of one 

of the attractors of the oscillator was investigated as a function of parameter A . 

Another bifurcation diagram was studied as a function of the initial values for the 

variable x . In this case, the basin of attractions of some of the attractors was discussed. 

The 2D basin of attraction diagram was also studied to investigate the variation of 

basins for two variables' ICs. The results revealed the exciting dynamics of the 

oscillator.  
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List of figures 

Fig. 1. Seven limit cycles for the 14 ICs to show the coexisting limit cycles of Equation 

(1); a) four inner limit cycles with ICs in 
0 0[0,8 ], 0x y   and run-time 4000; b) 

three limit cycles with ICs in 
0 0[8.5 ,90 ], 0x y    and run-time 60000; Specifically, 

part (a) of the figure shows the limit cycles of System (1) by nine ICs as 
0[ ,0]x  where 

0 0.8889 ,1.7778 ,2.6667 ,3.5556 ,4.4444 ,5.3333 ,6.2222 ,7.1111 ,8x          ; for 

part (b) of the figure three of outer and larger attractors are plotted; the ICs of these 

attractors are 
0[ ,0]x  where 0 8.5 ,28.875 ,49.25 ,69.6250 ,90x      ; Some of the 

ICs result in the same attractors; 

Fig. 2. Seven attractors for the 14 ICs to present the coexistence of more complex 

dynamics like chaotic and limit cycle attractors of Equation (4) for 2.7A ; a) four 

inner dynamics with ICs in 0 0[0,8 ], 0x y  ; b) three outer dynamics with ICs in 

0 0[8.5 ,90 ], 0x y   ; Specifically, part (a) of the figure shows the dynamics by nine 

ICs as 0[ ,0]x  where 

0 0.8889 ,1.7778 ,2.6667 ,3.5556 ,4.4444 ,5.3333 ,6.2222 ,7.1111 ,8x          ; for 

the part (b) of the figure three of outer and larger attractors are plotted; the ICs of these 

attractors are 0[ ,0]x  where 0 8.5 ,28.875 ,49.25 ,69.6250 ,90x      ; 

Fig. 3. a) The bifurcation plot of Equation (4) by varying bifurcation parameter A ; b) the three 

Lyapunov exponents (LEs) in which the largest is plotted in green; where the largest LE is 

positive, the oscillator has the chaotic dynamics; the diagrams are plotted with the constant ICs 

[ 7.5 ,0] ; 

Fig. 4. a) The bifurcation plot of y  of Equation (4) as a function of the value of IC of variable x  

to investigate the range of chaotic attractors for the values of ICs; b) the largest Lyapunov 

exponent ( maxLE ); The parameter 2.6A  is considered constant during the simulation. 
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Fig. 5. Attractors of Equation (4) with different ICs corresponding to the different parts of 

bifurcation of Fig. 4a; a) with ICs [1, 0]; b) with ICs [7, 0]; c) with ICs [15, 0]; d) with ICs [23, 

0]; e) with ICs [28, 0]; f) with ICs [35, 0]; Various dynamics of the oscillator by changing ICs of 

the x  variable are presented; 

Fig. 6. Basin of attraction of Equation (4) shows the different attractors for the different values of 

ICs in 2.6A ; The basin of attraction of four different attractors is plotted in different colors; 

the white color shows the uninvestigated region; 
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List of tables 

Table 1. A comparison of the previously proposed megastable oscillator with the oscillator provided in this study 

 

Table 1. 

# Reference # of trigonometric 

terms 

Dynamics 

1 [31] 2 Oyster-like 

2 [32] 4 Carpet-like 

3 [35] 1 Jagged-like 

4 [36] 5 - 

5 This work 1 Eye of God nebula 
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