Torque ripple minimization in Consequent-Pole PM Machines using harmonic current injection

Document Type : Research Article

Authors

1 Department of Engineering, Shahrekord University, Shahrekord, Iran

2 Universite de Lorraine - GREEN, 54000 Nancy – France

3 College of Science and Engineering, Flinders University, Australia

Abstract

In this paper, the torque ripple of Consequent-Pole PM Machines (CPPMMs) is reduced by injecting 2nd order harmonic of the armature current. In the proposed method, based on the machine back-EMF spectrum and the current main harmonic, appropriate 2nd order harmonic of the armature current is obtained. An analytical model is developed to obtain back-EMF of CPPMMs. In addition, the obtained analytical model is used to compute the developed electromagnetic torque as a function of the armature currents. Validity of the analytical model is verified using finite-element analysis. To investigate the efficacy of the proposed 2nd order current harmonic in torque ripple minimization, the optimum one is obtained separately by a direct search algorithm and the related electromagnetic torque waveforms for two different obtained 2nd order current harmonics are compared together. The developed analytical model is used in the direct search algorithm for the torque waveform computation. Although the proposed method is not as exact as the direct search method, it is precise enough considering its negligible computation burden over the direct search method.

Keywords


References:
1.Taghipour-Boroujeni, S. and Zamani, V. “Influence ofmagnet shaping on cogging torque of surface-mounted PMmachines”, Int. J. Numer. Model., 29(5), pp. 859–872(2016). DOI:10.1002/jnm.2150.
2.Zamani, V., Taghipour-Boroujeni, S., and Takorabet N.“Optimum arrangement of PMs in surface-mounted PMmachines: cogging torque and flux density harmonics’’,Journal of Electrical Engineering, Springer, 102(3), pp.1117–1127 (2020). DOI:10.1007/s00202-020-00925-8.
3.Bianchi, N., Bolognani, S., Bon, D., et al. “TorqueHarmonic Compensation in a Synchronous ReluctanceMotor’’, IEEE Trans. Energy Convers., 23(2), pp. 466-473(2008). DOI: 10.1109/TEC.2007.914357.
4.Ashabani, M., Milimonfared, J., and Taghipour-Boroujeni,S. “Cogging force mitigation of tubular permanent magnetmachines with magnet dividing’’, ICEMS, Seoul SouthKorea, pp. 810-814 (Aug. 2007). DOI: 10.1109/ICEMS12746.2007.4412196.
5.Islam, R., Husain, I., Fardoun, A., et al. “Permanent magnet synchronous motor magnet designs with skewing fortorque ripple and cogging torque reduction”, IEEE Trans.Ind. Appl., 45(1), pp. 152–160 (2009). DOI: 10.1109/07IAS.2007.240.
6.Taghipour-Boroujeni, S., Takorabet, N., Mezani, S., et al.“Using and enhancing the cogging torque of PM machinesin valve positioning applications”, IET-EPA, 14(12), pp.25616-2524 (2020). DOI: 10.1049/iet-epa.2020.0221.
7.Dajaku, G., Xie, W., and Gerling, D. “Reduction of lowspace harmonics for the fractional slot concentratedwindings using a novel stator design,” IEEE Trans. Magn.,50(5), ASN: 8201012 (2014). DOI: 10.1109/TMAG.2013.2294754.
8.Alberti, L. and Bianchi, N. “Theory and design offractional–slot multilayer windings”, IEEE Trans. Ind.App., 49(2), pp. 841-849 (2013). DOI: 10.1109/TIA.2013.2242031.
9.Chung, S.U., Kim, J.W., Chun, Y.D. , et al, “Fractional slotconcentrated winding PMSM with consequent pole rotorfor a low-speed direct drive: Reduction of rare earthpermanent magnet”, IEEE Trans. Energy Convers., 30(1),pp. 103–109 (2015). DOI: 10.1109/TEC.2014.2352365.
10.Chung, S.U., Kim, J.-W., Woo, B.-C., et al. “A noveldesign of modular three-phase permanent magnet verniermachine with consequent pole rotor”, IEEE Trans. onMagn., 47(10), pp. 4215–4218 (2011). DOI: 10.1109/TMAG.2011.2157324.
11. Tapia, J.A., Leonardi, F., and Lipo, T.A. “Consequent-polepermanent magnet machine with extended field-weakeningcapability,” IEEE Trans. Ind. Appl., 39(6), pp. 1704–1709(2003). DOI: 10.1109/TIA.2003.818993.
12. Li, J., Wang, K., and Liu, C., “Comparative study ofconsequent-pole and hybrid-pole permanent magnetmachines”, IEEE Trans. Energy Convers., 34(2), pp. 701-711 (2019). DOI: 10.1109/TEC.2018.2869166.
13. Li, F., Wang, K., Li, J., et al, “Electromagnetic performanceanalysis of consequent-pole PM machine with asymmetricmagnetic pole,” IEEE Trans. Magn., 55(6), ASN:8103205(2019). DOI: 10.1109/TMAG.2019.2904948.
14. Teymoori, S., Rahideh,A., Moayed-Jahromi, H., et al. “2-D analytical magnetic field prediction for consequent-polepermanent magnet synchronous machines”, IEEE Trans.Magn., 52(6), ASN: 8202114, (2016). DOI: 10.1109/TMAG.2016.2521834.
15. Taghipour-Boroujeni, S., Emami, S.P., Takorabet, N., et al.“Analytical investigation of the armature current influenceon the torque and radial force in eccentric consequent‐polePM machines,” IET-EPA, Wiley, 15(4), pp. 441-452 (2021).DOI:10.1049/elp2.12037.
16. Flieller, D., Nguyen, N.K., Wira, P., et al. “A self-learningsolution for torque ripple reduction for non-sinusoidalpermanent-magnet motor drives based on artificial neuralnetworks,” IEEE Trans. Ind. Electron., 61(2), pp. 655–666(2014). DOI: 10.1109/TIE.2013.2257136.
17. Jezernik, K., Korelic, J., and Horvat, R., “PMSM slidingmode FPGA-based control for torque ripple reduction,”IEEE Trans. Power Electron., 28(7), pp. 3549–3556(2013). DOI: 10.1109/TPEL.2012.2222675.
18. Feng, G., Lai, C., and Kar, N.C. ‘‘An analytical solution tooptimal stator current design for PMSM Torque Rippleminimization with minimal machine losses’’, IEEE Trans.on Ind. Elect., 64(10), pp. 7655–7665 (2017).DOI: 10.1109/TIE.2017.2694354.
19. Li, L., Lee, K.M., Bai, K., et al. “Inverse models andharmonics compensation for suppressing Torque Ripplesof multiphase permanent magnet motor”, IEEE Trans. Ind.Appl., 65(11), pp. 8730-8739 (2018). DOI: 10.1109/TIE.2018.2808935.
20. Wu, Z., Yang, Z., Ding, K., et al. “Order-domain-basedharmonic injection method for multiple speed harmonicssuppression of PMSM”, IEEE Trans. Power Elec., 36(4),pp. 4478-4487 (2021). DOI: 10.1109/TPEL.2020.3024121.
21. Feng, G., Lai, C., and Kar, N.C. "Speed harmonic baseddecoupled torque ripple minimization control forpermanent magnet synchronous machine with minimizedloss", IEEE Trans. Energy Convers., 35(4), pp. 1796-1805(2020). DOI: 10.1109/TEC.2020.2992487.
22. Lee, G.H., Kim, S.I., Hong, J.P., et al. “Torque Ripplereduction of interior permanent magnet synchronous motor using harmonic injected current”, IEEE Trans. Magn.,56(5), pp. 1582-1585 (2008). DOI: 10.1109/TMAG.2008.915776.
23. Zarko, D., Ban, D., and Lipo, T.A. “Analytical solution forelectromagnetic Torque in surface permanent-magnetmotors using conformal mapping”, IEEE Trans. Magn.,45(7), pp. 2943-2954 (July 2019). DOI: 10.1109/TMAG.2009.2014689.
24. Taghipour-Boroujeni, S., Emami, S.P., Takorabet, N. “Fastprediction of unbalanced magnetic pull in PM machines”,Electrical Engineering, 103(6), pp. 2595-2602 (2021).DOI: 10.1007/s00202-021-01253-1.
25. Rahideh, M. Mardaneh, and Korakianitis, ‘Analytical 2-Dcalculations of Torque, inductance, and back-EMF forbrushless slotless machines with surface inset magnets’’,IEEE Trans. Magn., 49(8), pp. 4873-4884 (2013). DOI:DOI: 10.1109/TMAG.2013.2242087.
Volume 32, Issue 5
Transactions on Computer Science & Engineering and Electrical Engineering
March and April 2025 Article ID:6725
  • Receive Date: 22 April 2022
  • Revise Date: 06 October 2022
  • Accept Date: 21 November 2022