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Abstract— In this paper, the torque ripple of consequent-pole PM machines (CPPMMs) is reduced by injecting 2nd order harmonic 

of the armature current. In the proposed method, based on the machine back-emf spectrum and the current main harmonic, 

appropriate 2nd order harmonic of the armature current is obtained. An analytical model is developed to obtain back-emf of CPPMMs. 

In addition, the obtained analytical model is used to compute the developed electromagnetic torque as a function of the armature 

currents. Validity of the analytical model is verified using finite-element analysis. To investigate the efficacy of the proposed 2nd order 

current harmonic in torque ripple minimization, the optimum one is obtained separately by a direct search algorithm and the related 

electromagnetic torque waveforms for two different obtained 2nd order current harmonics are compared together. The developed 

analytical model is used in the direct search algorithm for the torque waveform computation. Although the proposed method is not as 

exact as the direct search method, it is precise enough considering its negligible computation burden over the direct search method.  

 
Index Terms— Analytical model, consequent-pole PM machine, harmonic injection, torque ripple reduction. 

 

I. INTRODUCTION 

Due to the merits of PM machines such as high torque density and easiness of their control, they are interesting actuators to be 

used in many industrial and domestic applications. The main disadvantage of the PM machines is their high torque ripple. The 

torque ripple in PM machines includes two main sources, i.e., cogging torque and pulsating electromagnetic torque. Cogging 

torque is generated due to the tendency of the PMs to be aligned with the stator ferromagnetic teeth, and the pulsating 

electromagnetic torque is the result of interaction of the PM field and the armature current.  

There are some techniques for reducing cogging torque of PM machines such as PM shaping [1], PM segmentation [2,3], PM 

shifting [4] and skewing [5]. Choosing an appropriate combination of the stator slot and rotor pole numbers is the most effective 

method in cogging torque reduction [6]. Due to a very small value of the greatest common multiplier of pole and stator teeth 

numbers in fractional slot PM machines, their cogging torque is too small [6]. However, due to the concentrated winding of 

fractional slot machines, there is a considerable harmonic content of the armature flux density, and this results in a high level of 

pulsating torque in the fractional slot PM machines [7,8]. In comparison with surface-mounted PM machines, consequent-pole 

PM machines (CPPMMs) have lower cogging torque [9], because, one-half of the machine PM poles are replaced by 

ferromagnetic iron poles. The other merits of CPPMMs are lower PM usage [9], lower eddy currents in the PM blocks [10], and 

higher flux weakening capability [11]. However, due to the asymmetric field distribution in CPPMMs [12], torque pulsation is 

even more than the fractional slot surface-mounted PM machines [13]. Therefore, studying of torque pulsation (due to the PM 

and armature current interaction including the main and the other higher-order harmonics), as the main source of torque ripple in 

CPPMMs is an important and interesting issue. 

To study the performance of CPPMMs, numerical [9] and analytical [14,15] models are presented for computation of the air 

gap flux density. However, the torque ripple is not studied in these pieces of literature. To reduce the pulsating electromagnetic 

torque some literature proposed using armature current waveform shaping in the time-domain [16-18]. However, they require 

advanced drive controllers and a high computational burden. To simplify the required current controller and reduce the 

computational burden, harmonic-domain based methods [19-21] are adopted to find the correct harmonic magnitude and phase-

angle for suppressing the torque pulsation. Although the harmonic-based controller is simpler than the time-based ones, their 

approach is not deterministic in finding the desired current harmonics. Furthermore, they require extra hardware and 

computational tools for harmonic decomposition and transferring the signals between multiple reference frames. As a simple, 

and low-cost method, it is useful to obtain the required harmonics off-line and used them in the drive controllers, as far as the 

drive performance is not critical. In [22], the required harmonics 

are found by means of direct search method and using finite-

element analysis (FEA) as the off-line computational tool. 

However, FEA is not as fast as the analytical models [23]. 

Another weakness of [23], is that there is no deterministic 

 

 
 

Torque ripple minimization in Consequent-Pole 

PM Machines using harmonic current injection 

Samad Taghipour Boroujeni*, Seyed Payam Emami, Noureddine Takorabet, and Amin Mahmoudi 

S. Taghipour Boroujeni is with the Department of engineering, 

Shahrekord University, Shahrekord, Iran (e-mail: s.taghipour@sku.ac.ir) 

S. P. Emami is with the Department of engineering, Shahrekord 
University, Shahrekord, Iran (e-mail: payam.em93@gmail.com).  

N. Takorabet is with Université de Lorraine - GREEN, 54000 Nancy – 

France (e-mail: noureddine.takorabet@univ-lorraine.fr). 

. A. Mahmoudi is with College of Science and Engineering, Flinders 

University, Australia (e-mail: amin.mahmoudi@flinders.edu.au).  

mailto:s.taghipour@sku.ac.ir
mailto:payam.em93@gmail.com
mailto:noureddine.takorabet@univ-lorraine.fr
mailto:amin.mahmoudi@flinders.edu.au


 2 

approach to find the amplitude and the phase angle of the armature current harmonics. 

In this paper, 2
nd

 order current harmonic injection is proposed to suppress the torque pulsation in CPPMMs. In the proposed 

method, based on the machine back-emf spectrum and the main current harmonic, appropriate 2
nd

 order harmonic of the armature 

current is found. In section II of the presented paper, a 2D analytical model based on subdomain analysis is provided to obtain 

the back-emf harmonic components. The procedure of finding the appropriate the 2
nd

 current harmonic is described in III and the 

model is verified by means of FEA in IV. In IV the efficacy of the proposed 2
nd

 order current harmonic in torque ripple 

minimization is investigated by comparing the torque waveforms resulted by the obtained 2
nd

 order current harmonic and by the 

optimum 2
nd

 order current harmonic which is obtained by the direct search algorithm. In the direct search algorithm, the exact 

waveform of the electromagnetic torque is obtained by the developed analytical model. Although the aim of the paper is not the 

motor drive, in this section the effect of current harmonic injection is investigated considering the rotor inertia and feeding the 

motor with a three-phase voltage source inverter in dynamical condition. 

II. EXACT SOLUTION FOR ELECTROMAGNETIC TORQUE  

The geometry of a 4-pole CPPMM is shown in Fig. 1(a). Since it is aimed to compute only the electromagnetic torque 

pulsation due to the PM and current fields interaction, the stator slots, and the resulted cogging torque are neglected. It is worth 

mentioning that in the fractional slot CPPMMs, the slotting effect and its resulted cogging torque are negligible. Here, since the 

slots are semi-closed and the ratio of the slot opening to the slot pitch is too small (usually in fractional-slot machines), the 

Carter’s coefficient is almost unit and the air gap length is not increased. Otherwise, the air gap must be modified by the Carter’s 

coefficient [24]. The electromagnetic torque is found by using the Maxwell stress definition as (1) [24]. 
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where, Br and Bϕ  are the resultant radial and circumferential components due to the PMs and the armature currents. The 

subscripts PM and AR in (1) denote the PMs and the armature current, respectively. Hereafter, the PMs and armature flux 

density are found by means of subdomain analysis [25]. 

A. Flux density of the PMs  

The subdomain technique is used to obtain the no-load magnetic flux density in Fig. 1(b). Due to the symmetry in the 

distribution of the PMs flux density, only two regions are considered. The geometry of these regions and their dominant 

equations are given in (2) and (3), respectively. 
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where, αr, Rs, Rr, and Rm are given in Fig. 1, p is the number of the machine pole pairs and M is the PM magnetization vector 

which is considered in the radial direction. There is even-symmetry in the radial flux density in the machine air gap and the 

vector magnetic field in region I yields as (4).  
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To satisfy the boundary condition at r=Rs (zero circumferential field), bʋ  should be considered as (5).  
2 p

sb a R 
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In addition, there is zero tangential flux density at the lateral borders of the rotor slots (ϕ =±αrπ/2p) as well as the odd 

symmetry in the circumferential flux density distribution the rotor slot region. Therefore, the general solution of the magnetic 

potential vector inside the rotor slot is expressed as given in (6).  
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where, Kn is the particular solution and given in (7), Brem is the PM remanence and αp determines the PM arc (Fig. 1). 
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To satisfy the boundary condition (zero circumferential field) at r=Rr in the rotor slot regions, dn must equal as (8).  



 3 

2
1

r r

np np

n n r n rd c R K R
 

  

   (8) 

The unknown coefficients cn and aυ are obtained by considering the continuity conditions at r=Rm as given in (9).  
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Applying the correlation technique [11] on the equalities in (9), the coefficients aυ and cn are obtained as (10).  
1
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where c and a include Nmax and Vmax number of the harmonics of cn and aυ, respectively, D and G are diagonal matrixes. The 

element of (10) are reported in (11), where the functions S(n,υ) and T(n,υ) are given in (12). 

Computing the filed coefficients from (10), (5), (7), and (8), the PM flux density components in the air gap yield as (13). The 

obtained field components in (13) will be used later for calculating the back-emf and the electromagnetic torque. 

 

2

2

1

1 1

2
1 1

,

 ,

,1

 ,1

 ,

2

( , )

2

1 ( , )

(

np np np

r r r

p p p

np np

r r

np np

r r

np np np

r r r

n n m r m

r

n m s m

n n m r m

r

n m r

r

n m r m

r

n
D R R R

E p R R R S n

n
H K R R R

np
L K R R T n

np
F R R R T

  

  

 

 

  











 










 

 

 

  

   

 
   

 

  

 
   

 

 
   

 

 
   

 

 
1 2 1

,

, )

1

2

p p p

m s m

n

G p R R R
  

 




   

 

 (11) 

2

2

2

2

( , ) cos( )cos( )

( , ) sin( )sin( )

r

r

r

r

r

r

np
S n p d

np
T n p d









    


    














 (12) 

1
( )cos

( )sin

p pI
rPM

p pI
PM

A p
B a r b r p

r r

A p
B b r a r p

r r

 
 



 
  




 




 






    




  







 (13) 

B. Armature flux density 

To obtain the armature flux density, the air gap region is divided into p+1 regions as given in (14). The governing equations on 

all regions are in the Laplace form. 
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The general solution of the armature vector magnetic field in region I yields as (15). 
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To satisfy the boundary condition at r=Rs (Bϕ=µ0 J(ϕ )), bsʋ  and bcʋ  should be considered as (16). where Jsʋ  and Jcʋ  are the 

armature Fourier coefficients as given in (17). 
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In addition, there is zero tangential flux density at the lateral borders of the rotor slots (ϕ =±αrπ/2p). Therefore, the general 

solution of the magnetic potential vector in this region is expressed as given in (18).  
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To satisfy the boundary condition (zero circumferential field) at r=Rr in the rotor slot regions, dn must equal as (19).  
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The unknown coefficients cn and aυ are obtained by considering the continuity conditions at r=Rm (see (20) and (21)) and using 

the correlation technique. The coefficients aυ and cn are obtained as (22) 
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where ac and as include Vmax number of harmonics for acυ and asυ, ci include Nmax number of harmonics for cin, and Dc, Ds, and Gi 

are diagonal matrixes. The element of (22) are reported in (23), where the functions Si(n,υ) and Ti(n,υ) are given in (24). 
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Knowing the coefficients in (22), (16) and (19), the armature field components yield as (25). 
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III. FINDING APPROPRIATE ARMATURE CURRENT HARMONICS 

Injecting appropriate current harmonics is a well-known technique to suppress the torque ripple. Knowing the obtained field 

components in (13) and (25), the torque could be exactly predicted by (1) even in the presence of armature current harmonics. 

Since analytical models are fast, (1) could be used in a direct search algorithm to evaluate and find the minimum torque ripple as 

carried out in IV. However, it is not applicable to use (1) and find the appropriate current harmonic directly before computing the 

Maxwell integral. In other words, the explicit influence of the armature current harmonics on the torque pulsation is not clear in 

(1). As a simple and approximate approach, the machine torque could be obtained by (26) [23].  
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where, ex and ix are the back-emf and the current of phase x, and ωr is the rotor mechanical speed. In (26), the effect of the air gap 

saliency is not considered. Since the PM torque is much higher than the reluctance torque, (26) could be used to estimate 

approximate values of the torque harmonics. Back-emf is the derivative of the no-load flux linkage as given in (27), where, λPMx 

is the no-load flux linkage of phase x, and Lstk is the machine stack-length. 
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It is useful to express the current and back-emf in the Fourier form as given in (28). 
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where, Ei and Ii are the magnitude and φi and ψi are the corresponding phase angles of the i
th

 harmonic in the back-emf and 

current waveforms, respectively. Using the Fourier forms of the current and back-emf in (28) inside (26), it is obvious that the 

same-order harmonics in phases back-emf and current will result in DC electromagnetic torque and non-equal order harmonics 

generate electromagnetic torque pulsations. Higher harmonics amplitude of the non-equal order current and back-emf harmonics 

result in higher torque pulsation.  

The interaction of the m
th

 harmonic of the back-emf with the n
th

 harmonic of the current (m≠n) in phase “a” of the machine 

results in torque pulsation with frequencies of (m±n)ω as given in (29), where the superscript “a” denotes the contribution of 

phase “a” in producing torque pulsation. The resultant torque pulsation for all phases are reported in (30), where qcn is the current 

phase sequence for the n
th

 harmonic, qvm is the back-emf phase sequence for the m
th

 harmonic and i={0,1,2} are linked with 

phases {a,b,c}, respectively. The positive, negative, and zero phase sequences are considered as +1, -1 and 0, respectively. Using 

(30), the resultant electromagnetic torque pulsation for different combinations of the phase sequences of the current and back-

emf are given in (31), respectively.  
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As well as, the pulsating torque due to the interaction of m
th

 and n
th

 harmonic orders in the back-emf and current, i.e., Tr(n,m), 

there is another torque pulsation component with frequency of (m+n)ω or (m-n)ω which is the result of the interaction between 

the n
th

 and m
th

 harmonic orders in the back-emf and current, i.e., Tr(m,n). Therefore, to suppress the electromagnetic torque 

pulsation with the same frequency, the resultant toque pulsation Tr(m,n)+Tr(n,m), must be zero.  

Since it is not possible to eliminate the influence of all harmonics in back-emf, the most dominant and important one, i.e., the 

2
nd

 order harmonic is planned to be compensated by injecting the 2
nd

 order harmonic in the armature current in the considered 

CPPMM. Since the 2
nd

 harmonics in the back-emf has the negative phase sequence, the injected 2
nd

 harmonic of the current must 

have the negative phase sequence too. 

Based on (31), the resulted torque harmonics due to the interaction of the five first harmonics of the back-emf and 1
st
 and 2

nd
 

armature current harmonics are given in Table 1. It is worth mentioning that the low order harmonics have higher magnitude and 

result in higher torque pulsation. As highlighted in Table 1, the 3p harmonic order in the electromagnetic torque is the result of 

the 1
st
 harmonic of the current with the 2

nd
 and 4

th
 harmonics in the back-emf voltage. In comparison with the 4

th
 harmonic 

component of the back-emf, the 2
nd

 one has a higher magnitude and produces a higher 3p order toque harmonic than the 4
th

 one. 

In addition, the interaction of the 2
nd

 order harmonic with the 1
st
 and 5

th
 back-emf components produces 3p harmonic order in the 

electromagnetic torque. However, the 1
st
 harmonic component is greater than the 5

th
 one in the back-emf, and results in a higher 

3p order toque harmonic. Therefore, Tr(2,1) is used to nullify Tr(1,2). To nullify only Tr(1,2), the 2
nd

 order harmonic magnitude and 

the phase angle is obtained considering Tr(1,2)=-Tr(1,2) as given in (32).  
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IV. RESULTS 

A. Model verification 

A CPPMM with 6-slot/4-pole CPPMM is considered as the case study (see Fig. 1 (a)). The data of the considered machine is 

given in Table 2. To investigate the validity of the provided model FEA simulations are carried out. Hereafter, the values of αr 

and αp are considered the same in all designs (αp=αr) to use the maximum available space of the rotor slots and increase the PM 

flux linkage. The no-load flux density components of the CPPMMs for αr=0.65 are obtained by means of FEA and the proposed 

model in Fig. 2 (a) and (b). The distribution of the field density, the used meshes and the B-H curves of the used material (M19) 

is illustrated in Fig.2 (c)-(e), respectively. It is seen that the proposed model is in good consistency with FEA. It is worth 

mentioning that, the limited number of the used frequencies in the Fourier series caused some fluctuations in the curves in Fig.2. 

Considering a higher number of frequencies will reduce the fluctuation but increase the computational burden.  

The harmonic spectrum of the PM flux linkage (λPM) is given in Fig. 3 for different values of αr. As seen in Fig. 3, the highest 

magnitudes for the working (first PM harmonic) are obtained with αr =0.7 and αr =0.75. However, in these cases, the rotor teeth 

flux density goes beyond the considered saturation limit (1.5T). To maximizing the 1
st
 harmonic of the PM flux linkage while 

respecting the saturation constrain, αr is selected as 0.6 and αr =0.65. However, in comparison with αr =0.5, in the machines with 

αr=0.6 and αr=0.65, there are considerable 2
nd

 order harmonic components (2p=4) in the back-emf and the PM flux linkage. 

The magnitude and phase-angle spectrums for the considered CPPMMs at speed of ωr=20 rad./sec. are given in Figs. 4(a) and 

(b), respectively. As seen in Fig. 4(a) there is considerable 2
nd

 harmonic component (2p=4) in the back-emf of the machines with 

αr=0.65 and αr=0.65, while the 5
th

-order (5p=10) harmonic in the machine with αr=0.5 is also significant. The back-emf 

harmonic components result in torque pulsation. The torque waveforms for the considered CPPMMs excited with three-phase 

balanced and synchronized (f=ωp/2/π) current I1=1∠-30
o
 are obtained by the proposed model and FEA as illustrated in Fig.5. As 

seen there is a good consistency between the FEA and analytical model results. In addition, as expected the torque pulsation and 

the average torque increase by increasing the PM arc.  

B. Approach Efficacy  

To investigate the efficacy of the proposed method in torque ripple minimization, the obtained torque waveform by the 

proposed method is compared by the one obtained by injecting the best solution for the 2
nd

 order current harmonic. The best 
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solution for the 2
nd

 order current harmonic is obtained by applying a direct search algorithm. In the direct search algorithm, the 

variation of the magnitude and the phase angle of the 2
nd

 order harmonic is in the step of 0.05A for 0 to 0.7A and 2
o
 for 0 to 358

o
, 

respectively. The developed analytical model in III is used in the direct search algorithm for the torque waveform computation.  

The obtained torque pulsation by using (32) and the direct search method, for the CPPMM with αr=0.6 and two armature 

currents with different 1
st
 order current harmonics (I1=1∠-30

o
 and I1=1∠0

o
) are given in Fig. 6. The electromagnetic torque 

waveforms obtained by injecting the 2
nd

 order harmonic current found by (32) and the direct search method for the mentioned 

conditions are given in Fig. 7.  

As seen in Fig.6 the proposed 2
nd

 order current harmonic from (32) is very close the best ones obtained by the direct search 

algorithm. From Fig.7 it is observable that torque pulsation is decreased by injecting 2
nd

 order current harmonic obtained by (32), 

but not as much as decreased by injecting the best 2
nd

 order current harmonic obtained by the direct search algorithm. Although 

the proposed method is not as effective as the direct search method, it is efficient enough considering its negligible computation 

burden over the direct search method. Because, in the direct search algorithm, the torque pulsation must be computed for all 

possible 2
nd

 current harmonic solutions (more than 2500 candidates), that is a time-consuming task, while in the proposed 

approach in III the 2
nd

 current harmonic is obtained directly by (32). Therefore, considering the fast response of the proposed 

method for finding the desired 2
nd

 order harmonic current, its precision is acceptable as the initial solution for finding the best 

solution by applying a local search algorithm especially in the on-line working condition.  

The reason that (32) cannot reduce the torque pulsation more, is that the effect of higher harmonic components in the torque 

pulsation is neglected in (32) (e.g., Tr(1,4) and Tr(2,6)). In addition, the effect of magnetic saliency is neglected in (32). Due to the 

mentioned reasons the dominant harmonic (3p=6) of the electromagnetic torque by using (32) is not nullified completely (see 

Fig. 8). The merit of the proposed approach becomes notable when the machine model is not exactly known due to saturation or 

other parameter variation. In this case, the best solution could be found by using iterative local search methods and the proposed 

solution in (32) could serve as a good initial solution that reduces the computation time of the optimization algorithm. In other 

words, due to inaccuracies, the predicted 2
nd

 order harmonic is not exactly the best one. For this reason, some paper proposed to 

find the best 2
nd

 order harmonics by means of on-line optimization algorithms in each working condition. Therefore, to decrease 

the computational burden of such algorithms, using the proposed method is very useful to find a good initial solution in each 

working condition. To consider the effect of saturation, the torque curves in two cases is obtained in nonlinear magnetic 

condition and are illustrated in Fig.9. 

C. Dynamic Simulations 

Although the aim of the paper is not the motor drive, in this section the effect of the current harmonic injection is investigated 

by considering the rotor inertia and feeding the motor with a three-phase voltage source inverter. The used parameters are 

reported in Table III. Since the stator neutral point is not grounded, there are only two state variables for the flux linkages, and 

the related state-space equations are given in (33). The machine currents are given as functions of the flux linkages in (34). 

Considering λc=-λa-λb in (33) and adding the mechanical equations, the machine state-space equations yield (35). 
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The hysteresis switching algorithm is used for the inverter. Since the motor drive is not the scope of this study, the current 

controllers are not included and it is supposed the command current signals are known. In other words, the main and 2
nd

 order 

harmonics of the machine currents are considered as the reference signals. The block diagram of the simulated system is given in 

Fig.10. In the dynamic simulation zero initial conditions are considered for the state variables except for the initial speed which 

is considered 20. For the condition of (αr,I1)=(0.6,1∠-30
o
), the obtained electromagnetic torque and the rotor speed with and 

without current harmonic injection are given in Fig.11. It is worth mentioning that the torque load are considered as the average 

torques reported in Fig. 7(b). Comparing the electromagnetic torque in Fig.11 (b) with the waveforms in Fig.7 (b), shows that (1) 

2
nd

 harmonic injection in the armature current could suppress the torque ripple, (2) the behavior of the torque waveform with and 

without current harmonic injection (in the both best and predicted optimum cases) results in the same conclusion 
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V. CONCLUSION 

In this paper, 2
nd

 order current harmonic injection is proposed to suppress the electromagnetic torque pulsation in CPPMMs. In 

the proposed method, appropriate 2
nd

 order harmonic of the armature current is found. In section II of the presented paper, a 2D 

analytical model based on subdomain analysis is provided to obtain the required back-emf harmonic components. The model is 

verified by means of FEA. The efficacy of the proposed 2
nd

 order current harmonic in torque ripple minimization is investigated 

by comparing the electromagnetic torque waveform resulted by the obtained 2
nd

 order current harmonic and the torque due the 

optimum 2
nd

 order current harmonic obtained by the direct search algorithm. In the direct search algorithm, the exact waveform 

of the electromagnetic torque is obtained by the developed analytical model. The results show that the proposed 2
nd

 order current 

harmonic is close the best one obtained by the direct search algorithm (Fig. 6). The reason that the obtained 2
nd

 order current 

harmonics are not the same as the best one is discussed and it is justified that the proposed method is useful to be applied due to 

its fastness, especially to find initial solution in the iterative online applications. 
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Fig. 2 (a) radial and (b) circumferential components of the PM flux density, (c) flux density distribution, (d) meshes and B-H curve of the used material in  the 
studied machine.  

 

Fig. 3 Harmonic spectrum of the PM flux linkage.  
 

Fig. 4 The (a) magnitude (b) phase-angel spectrums and (c) waveforms of the studied machine back-emf at ωr=20 rad./sec..  

 
Fig. 5 The electromagnetic torque versus the rotor angle in mechanical degree for the CPPMM with (a) αr=0.5, (b) αr=0.6 and (c) αr=0.65. 

 

Fig.6 Torque pulsation in the case of 2nd harmonic current injection for (a) (αr, I1)=(0.6,1∠0) and (b) (αr, I1)=(0.6,1∠-30o) 
 

Fig. 7 Torque waveforms versus the rotor angle in mechanical degree for (a) (αr,I1)=(0.6,1∠0) and (b) (αr,I1)=(0.6,1∠-30o). 

 

Fig.8 Torque spectrum for (a) (αr,I1)=(0.6,1∠0) and (b) (αr, I1)=(0.6,1∠-30o). 
 

Fig. 9 Torque versus the rotor angle for (a) (αr, I1)=(0.6,1∠0) and (b) (αr, I1)=(0.6,1∠-30o) in linear (L) and nonlinear (NL) magnetic cases. 
 

Fig. 10. Block-diagram of the dynamic model of (a) the drive system, (b) the machine. 

 

Fig. 11 Dynamic simulation results for (αr,I1)=(0.6,1∠-30o) (a) Speed, (b) electromagnetic torque, and (c) currents. 
 

 

 
TABLE I: ELECTROMAGNETIC TORQUE COMPONENTS. 

TABLE II: PARAMETERS OF THE STUDIED CPPM. 

TABLE III: PARAMETERS OF THE CPPM DYNAMIC SIMULATION. 
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Fig. 1.  The (a) geometry and (b) variables for the considered CPPMM.  
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Fig. 2 (a) radial and (b) circumferential components of the PM flux density, (c) flux density distribution, (d) meshes and B-H curve of the used material in  the 

studied machine.  
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Fig. 3 Harmonic spectrum of the PM flux linkage.  

 

 
(a) 

 
(b) 

 
(c) 

Fig. 4 The (a) magnitude (b) phase-angel spectrums and (c) waveforms of the studied machine back-emf at ωr=20 rad./sec..  
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(a) 

 
(b) 

 
(c) 

Fig. 5 The electromagnetic torque versus the rotor angle in mechanical degree for the CPPMM with (a) αr=0.5, (b) αr=0.6 and (c) αr=0.65. 

 

 
(a) 

 
(b) 

Fig.6 Torque pulsation in the case of 2nd harmonic current injection for (a) (αr, I1)=(0.6,1∠0) and (b) (αr, I1)=(0.6,1∠-30o) 
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(a) 

 
(b) 

Fig. 7 Torque waveforms versus the rotor angle in mechanical degree for (a) (αr,I1)=(0.6,1∠0) and (b) (αr,I1)=(0.6,1∠-30o). 
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Fig.8 Torque spectrum for (a) (αr,I1)=(0.6,1∠0) and (b) (αr, I1)=(0.6,1∠-30o). 
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(a) 

 
(b) 

Fig. 9 Torque versus the rotor angle for (a) (αr, I1)=(0.6,1∠0) and (b) (αr, I1)=(0.6,1∠-30o) in linear (L) and nonlinear (NL) magnetic cases. 
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Fig. 10. Block-diagram of the dynamic model of (a) the drive system, (b) the machine. 
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(b) 

 

 

 

 
(c) 

Fig. 11 Dynamic simulation results for (αr,I1)=(0.6,1∠-30o) (a) Speed, (b) electromagnetic torque, and (c) currents. 
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TABLE I 

 
ELECTROMAGNETIC TORQUE COMPONENTS. 

Torque harmonic 

components 

Back-emf (harmonic, qvm) 

(p,+) (2p,-) (3p,0) (4p,+) (5p,-) 

current 
)harmonic, qcn) 

(p,+) 0 3p --- 3p 6p 

(2p,-) 3p 0 --- 6p 3p 

 

 

TABLE II 
PARAMETERS OF THE STUDIED CPPM. 

Parameter Symbol Value 

Pole pairs p 2 

Number of slots Qs 6 
No. turn per phase N 200 

Rotor radius Rr 68.3 mm 

Magnet radius Rm 74.3 mm 
Air gap length g 0.7 mm 

Inner stator radius Rs 75.0 mm 

Stack length Lstk 50.0 mm 
PM remanence Brem 1.2T 

 
TABLE III 

PARAMETERS OF THE CPPM DYNAMIC SIMULATION. 

Parameter Symbol Value 

Stator resistance rs 0.1 Ω 

DC link voltage VDC 70 V 
Rotor inertia J 0.002 kg.m2 

Reference speed ω* 20 rpm 
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