Simulation of the vaiont landslide via multi-body material point method with cohesive frictional interfaces

Document Type : Article

Authors

Department of Civil Engineering, K. N. Toosi University of Technology, Tehran, Iran

Abstract

In this study, the Vaiont landslide is simulated using an enhanced material point method (MPM) capable of modeling multi-body interactions with cohesive-frictional interfaces. The interface model accuracy is examined through several benchmark problems. Afterward, the capability of the numerical tool in the simulation of large deformations during a failure is demonstrated in two problems. After the verification phase, the Vaiont landslide is modeled considering three distinct elastoplastic bodies with cohesive-frictional interfaces. The calculated final configuration has excellent agreement with field observations. The effect of the number of masses contributed to the problem is investigated for the next step. Finally, the Vaiont landslide is modeled with rigid boundaries and a main sliding body. It is shown that the rigid boundary assumption may cause significant errors in the final geometry evaluation.

Keywords


References:
1. Hendron, A.J. and Patton, F.D. "The Vaiont slide-a geotechnical analysis based on new geologic observation of the failure surface", Engineering Geology, 24, pp. 475-491 (1987).
2. Evans, S.G., Mugnozza, A.L., Strom, A.L., et al. "Landslides from massive rock slope failure and associated phenomena", Springer, Dordrecht (2006).
3. Ferri, F., Toro, GD., Hirose, T., et al. "Low to high velocity frictional properties of the clay rich gouges from the slipping zone of the 1963 Vaiont slide (northern Italy)", Journal of Geophysical Research, 116, pp. 1-17 (2011).
4. Wolter, A., Havaej, M., Zorzi, L., et al. "Exploration of the kinematics of the 1963 Vajont slide, Italy, using a numerical modelling toolbox", Italian Journal of Engineering Geology and Environment, 6, pp. 599-612 (2013).
5. Boon, C.W., Houlsby, G.T., and Utili, S. "New insights in the 1963 Vajont slide using 2D and 3D Distinct Element Method analyses", Geotechnique, 64(10), pp. 800-816 (2014).
6. Zhao, T., Utili, S., and Crosta, G.B. "Rockslide and impulse wave modelling in the vajont reservoir", Rock Mechanics and Rock Engineering, 49, pp. 2437-2456 (2016). https://doi.org/10.1007/s00603-015-0731-0.
7. Zaniboni, F. and Tinti, S. "Numerical simulations of the 1963 Vajont landslide, Italy: application of 1D Lagrangian modelling", Natural Hazards, 70, pp. 567- 592 (2017). https://doi.org/10.1007/s11069-013-0828-2.
8. Sitar, N., MacLaughlin, M.M., and Doolin, D.M. "Influence of kinematics on landslide mobility", Journal of Geotechnical and Geoenvironmental, 131, pp. 715-728 (2005). DOI: https://doi.org/10.1061/(ASCE)1090-0241(2005)131:6(716).
9. Ward, D. and Day, S. "The 1963 landslide and flood at Vaiont reservoir Italy A tsunami ball simulation", Italian Journal of Geosciences, 130(1), pp. 16-26 (2011).
10. Bistacchi, A., Massironi, M., Superchi, L., et al. "3D geological model of the 1963 Vajont landslide", Italian Journal of Engineering Geology and Environment, 6, pp. 531-539 (2013). https://doi.org/10.4408/IJEGE.2013-06.B-51.
11. Vacondio, R., Mignosa, P., and Pagani, S. "3D SPH numerical simulation of the wave generated by The Vaiont rockslide", Advances in Water Resources, 59, pp. 146-156 (2013). https://doi.org/10.1016/j.advwatres.2013.06.009.
12. Liano-serna, M.A., Farias, M.M., and Perdroso, D.M. "An assessment of the material point method for modelling large scale run-out processes in landslides", Landslides, 13, pp. 1057-1066 (2016). https://doi.org/10.1007/s10346-015-0664-4.
13. Yerro, A., Pinyol, N.M., and Alonso, E.E. "Internal progressive failure in deep-seated landslides", Rock Mechanics and Rock Engineering, 49, pp. 2317-2332 (2016). https://doi.org/10.1007/s00603-015-0888-6.
14. Alonso, E.E. "Triggering and motion of landslides", Geotechnique, 71, pp. 3-59 (2020). https://doi.org/10.1680/jgeot.20.RL.001.
15. Alonso, E.E., Yerro, A., and Pinyol N.M. "Recent developments of the Material Point Method for the simulation of landslides", International Symposium on Geohazards and Geomechanics: Earth and Environmental Science (2015). https://doi.org/10.1088/1755-1315/26/1/012003.
16. Pinyol, N.M., Alvardo, M., Alonso, E.E., et al. "Thermal effects in landslide mobility. Giotechnique", 68(6), pp. 528-545 (2018).http://dx.doi.org/10.1680/jgeot.17.P.054.
17. Kularathna, S., Liang W., Zhao T., et al. "A semiimplicit material point method based on fractionalstep method for saturated soil", International Journal for Numerical and Analytical Methods in Geomechanics, 45(10), pp. 1-32 (2021). https://doi.org/10.1002/nag.3207.
18. Zheng, X., Pisano, F., Vardon, P.J., et al. "An explicit stabilized material point method for coupled hydromechanical problems in two-phase porous media", Computers and Geotechnics, 135 (2021). https://doi.org/10.1016/j.compgeo.2021.104112.
19. Sun, Z., Liu, K., Wang, J., et al. "Hydro-mechanical coupled b-spline material point method for large deformation simulation of saturated soils", Engineering Analysis with Boundary Elements, 133, pp. 330-340 (2021). https://doi.org/10.1016/j.enganabound.2021.09.023.
20. Gonzalez, O. and Stuart, A. "A first course in continuum mechanics", Cambridge University Press (2008).
21. Belytschko, T., Liu, W.K., Moran, B., et al., Nonlinear Finite Element for Continua and Structures, John Wiley and Sons Ltd (2014).
22. Sulsky, D., Chen, Z., and Schreyer, H.L. "A particle method for history-dependent materials", Computer Modeling in Engineering and Sciences, 118, pp. 179- 196 (1994). https://doi.org/10.1016/0045-7825(94)90112-0.
23. Sulsky, D., Chen, Z., and Schreyer, H.L. "Application of a particle-in-cell method to solid mechanics", Computer Physics Communications, 87, pp. 236-252 (1995). https://doi.org/10.1016/0010-4655(94)00170-7.
24. Sulsky, D. and Schreyer, H.L. "Axisymmetric form of the material point method with applications to upsetting and Taylor impact problems", Computer Modeling in Engineering and Sciences, 139, pp. 409- 429 (1996). https://doi.org/10.1016/S0045-7825(96)01091-2.
25. Zhang, X., Sze, K.Y., and Ma, S. "An explicit material point finite element method for hyper-velocity impact", International Journal for Numerical Methods in Engineering, 66, pp. 689-706 (2006).https://doi.org/10.1002/nme.1579.
26. Zhang, X., Chen, Z., and Liu, Y., The Material Point Method a Continuum-Based Particle Method for Extreme Loading Cases, Academic Press Publications (2016).
27. Chen, Z.P., Qiu, X.M., Zhang, X., et al. "Improved coupling of finite element method with material point method based on a particle-to-surface contact algorithm", Computer Methods in Applied Mechanics and Engineering, 293, pp. 1-19 (2015). https://doi.org/10.1016/j.cma.2015.04.005.
28. Chen, Z., Zhang, X., Qiu, X., et al. "A frictional contact algorithm for implicit material point method", Computer Methods in Applied Mechanics and Engineering, 321(1), pp. 124-144 (2017). https://doi.org/10.1016/j.cma.2017.04.006.
29. Bardenhagen, S.G., Guilkey, J.E., Roessig, K.M., et al. "An improved contact algorithm for the material point method and application to stress propagation in granular material", Computer Methods in Applied Mechanics and Engineering, 2(4), pp. 509-522 (2010). https://doi.org/10.3970/cmes.2001.002.509.
30. Lian, Y.P., Zang, X., and Liu, Y. "Coupling of finite element method with material point method by local multi-mesh contact method", Computer Methods in Applied Mechanics and Engineering, 200, pp. 3482- 3494 (2011). https://doi.org/10.1016/j.cma.2011.07.014.
31. Owen, D.R.J. and Hinton, E., Finite Element in Plasticity, Theory and Practice, Pineridge Press Limited (1980).
32. Ma, Z.T., Zhang, X., and Huang, P. "An objectoriented MPM framework for simulation of large deformation and contact of numerous grains", Computer Modeling in Engineering and Sciences, 55, pp. 61-87 (2010).
33. Beyabanaki, S.A.R., Ferdosi, B., and Mohammadi, S. "Validation of dynamic block displacement analysis and modification of edge-to-edge contact constraints in 3-D DDA", International Journal of Rock Mechanics and Mining Sciences, 46(7), pp. 1223-1234 (2009). https://doi.org/10.1016/j.ijrmms.2008.12.001.
34. Wang, B., Vardon, P.J., Hicks, M.A., et al. "Development of an implicit material point method for geotechnical applications", Computers and Geotechnics, 71, pp. 159-167 (2016). https://doi.org/10.1016/j.compgeo.2015.08.008.
35. Zhang, Y., Xu, Q., Chen, G., et al. "Extension of discontinuous deformation analysis and application in cohesive-frictional slope analysis", International Journal of Rock Mechanics and Mining Sciences, 70, pp. 533-545 (2014). https://doi.org/10.1016/j.ijrmms.2014.06.005.
36. Biran, G.Y. and Hatzor, Y.H. "Benchmarking the numerical Discontinuous Deformation Analysis method", Computers and Geotechnics, 71, pp. 30-46 (2016). https://doi.org/10.1016/j.compgeo.2015.08.003.
37. Ma, S., Zhao, Z., Nie, W., et al. "Implementation of displacement-dependent Barton-Bandis rock joint model into discontinuous deformation analysis", Computers and Geotechnics, 86, pp. 1-8 (2017). https://doi.org/10.1016/j.compgeo.2016.12.030.
38. Zhang, H., Liu, S., Zheng, L., et al. "Extensions of edge-to-edge contact model in three-dimensional discontinuous deformation analysis for friction analysis", Computers and Geotechnics, 71, pp. 261-275 (2016). https://doi.org/10.1016/j.compgeo.2015.09.010.
39. Zhang, H., Liu, S., Chen, G., et al. "Extension of threedimensional discontinuous deformation analysis", International Journal of Rock Mechanics and Mining Sciences, 86, pp. 65-79 (2016). https://doi.org/10.1016/j.ijrmms.2016.03.021.
40. Huang, P., Li, S., Guo, H., et al. "Large deformation failure analysis of the soil slope based on the material point method", Computers and Geosciences, 4, pp. 1- 13 (2015). https://doi.org/10.1007/s10596-015-9512-9.
41. Bui, H.H., Fukagawa, R., Sako, K., et al. "Lagrangian meshfree particles method (SPH) for large deformation and failure  flows of geomaterial using elastic-plastic soil constitutive model", International Journal for Numerical and Analytical Methods in Geomechanics, 32, pp. 1537-1570 (2008). https://doi.org/10.1002/nag.688.
42. Steffen, M., Kirby, M.K., and Berzins, M. "Decoupling and balancing of space and time errors in the material point method (MPM)", International Journal of Rock Mechanics and Mining Sciences, 82(10), pp. 1207- 1243 (2010). https://doi.org/10.1002/nme.2787.
43. Ibanez, J.P. and Haztor, Y.H. "Rapid sliding and friction degration: lessons from the catastrophic Vajont landslide", Engineering Geology, 244, pp. 96-106 (2018). https://doi.org/10.1016/j.enggeo.2018.07.029.
44. Broili, L. "New knowledges on the geomorphology of the Vaiont slide slip surface", Rock Mechanics and Engineering Geology, 5, pp. 38-88 (1967).
45. Pinyol, N.M., Alvardo, M., and Alonso, E.E. "Thermal effects in landslide mobility", Geotechnique, 65, pp. 528-545 (2018). https://doi.org/ 10.1680/jgeot.17.P.054.
46. Muller, L. "New consideration on the Vaiont slide", Rock Mechanics and Engineering Geology, 6, pp. 1-91 (1968).
47. Bernoulli, D. and Peters, T. "Traces of rhyolitistrachitic volcanism in the upper Jurassic of the SouthO. ern alps", Eclogae Geologicae Helvetiae, 63, pp. 609- 621 (1970).
48. Bromhead, E.N. "Reflections on the residual strength of clay soils, with special reference to beddingcontrolled landslides", Quarterly Journal of Engineering Geology and Hydrogeology, 46(2), pp. 132-155 (2013). https://doi.org/10.1144/qjegh2012-078.
49. Muller-Salzburg, L. "The vajont catastrophe-a personal review", Engineering Geology, 24, pp. 423-444 (1987).
50. Alonso, E.E. and Pinyol, M.N. "Criteria for rapid sliding I. A review of Vaiont case", Engineering Geology,114(3), pp.  198-210 (2010).https://doi.org/10.1016/j.enggeo.2010.04.018.
51. Ghirotti, M. "Aspetti geomeccanici e modellazione numerica della frana del Vajont", Phd thesis, universitya di Parma, Ferrara, Firenze e Pavia, Italy (1992).
Volume 30, Issue 3
Transactions on Civil Engineering (A)
May and June 2023
Pages 902-917
  • Receive Date: 04 October 2021
  • Revise Date: 06 March 2022
  • Accept Date: 21 November 2022