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Abstract. In this study, the Vaiont landslide is simulated using an enhanced Material
Point Method (MPM) capable of modeling multi-body interactions with cohesive-frictional
interfaces. The interface model accuracy is examined through four elastic benchmarks.
Afterward, the capability of the MPM is demonstrated in the simulation of two large
deformation failures. After the veri�cation phase, the Vaiont landslide is modeled
considering three distinct elastoplastic bodies with cohesive-frictional interfaces. The
calculated �nal con�guration has excellent agreement with �eld observations. The e�ect of
the number of masses contributing to the problem is investigated for the next step. Finally,
the Vaiont landslide is modeled with rigid boundaries and a main sliding body. It is shown
that the rigid boundary assumption may cause signi�cant errors in the �nal geometry of
the problem.

© 2023 Sharif University of Technology. All rights reserved.

1. Introduction

The Vaiont landslide occurred in the reservoir of the
Vaiont dam located in the Italian Alps (1963). Nearly,
250 million cubic meters of rock and soil became
unstable and slid into the dam reservoir at a high
velocity of approximately 30 meters per second. The
landslide caused 
ood (tall waves up to 70 m above
the dam crest) and ravaged the town of Longarone and
nearby villages, resulting in more than 2000 causalities
[1{6]. The Vaiont landslide is a reactivation of an old
landslide [1]. The slope slid on top of a strong limestone
formation �lled with clay layers covering the failure
surface. It is believed that the combined e�ects of
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intense rainfall and the rising of the reservoir level
are the primary triggers of the failure [1,6,7]. High
pore pressures at the reservoir level were encountered
near the failure surface before the landslide [1]. The
di�erence between limestone and clay permeabilities
might cause high pore pressures in the vicinity of
the clay layer [1]. The Vaiont landslide has been
modeled via several numerical tools like the discrete
element method, discontinuous deformation analysis,
and meshless methods [5,6,8{11]. In the literature, the
Vaiont landslide is initially considered a single mass
on a rigid surface in a single-phase medium [5,6,8].
The modeling of the landslide provides better results
when a thick clay layer is placed above the rigid
boundary [10{14]. The Vaiont landslide is also simu-
lated as a two- or even three-phase (solid, 
uid, and
heat) problem with embedded hydro-mechanical shear
bands (or rock bridges) accounting for the complex
geometry [15]. In this paper, the Vaiont landslide is
simulated using the Material Point Method (MPM), a



O.R. Barani and H. Bagherzadeh/Scientia Iranica, Transactions A: Civil Engineering 30 (2023) 902{917 903

powerful numerical tool to model extreme deformation
problems with the following innovations: cohesive-
frictional interfaces, degradation of friction-cohesion
bonds, deformable boundaries, and multi-body inter-
actions in three di�erent cases.

First, the landslide is modeled using three
contacting masses with deformable boundaries and
cohesive-frictional interfaces. The Vaiont valley con�g-
uration and particle discretization were obtained from
[12]. Then, to investigate the e�ect of the number
of contacting bodies on the result, the Vaiont slide
is discretized into �ve masses with cohesive-frictional
interfaces and deformable boundaries. The bodies are
selected using main faults and rock bridges provided
by Alonso et al. [14{16]. The third case is devoted
to simulating the landslide with the rigid boundary to
highlight the deformable boundary role in the results.
While the MPM can solve two- or three-phase problems
[16{19], it is not computationally a�ordable to apply
the main innovations of this paper in a two-phase
framework due to the massive size of the problem.
Therefore, all computations of this study are carried
out under single-phase MPM simulation.

The remaining parts of this paper are presented
as follows: Section 2 presents the formulations of
the MPM and the multi-body contact methodology.
Section 3 simulates six benchmarks to show the contact
model accuracy and the capability of the numerical
tool. Section 4 describes the Vaiont landslide charac-
terization. Section 5 presents the simulation results of
the Vaiont landslide. The e�ects of contacting masses,
as well as rigid boundaries, are discussed in this section.
Finally, Section 6 concludes this paper.

2. Formulation

2.1. Continuum mechanics
In continuum, the kinematic of a medium is presented
using \initial" (X) and \current" (x) position (or coor-
dinate) formulation. The link between the initial and
current positions is presented using the deformation
map (�) as follows:

xi = �i(Xi; t): (1)

The gradient of the deformation map (F ) de�nes how
the material is deformed locally as:

Fij =
@�i
@Xj

: (2)

The deformation gradient Jacobian (J) interprets the
condition of the medium after deformation. J < 1
implies that the volume is reduced, while J > 1 means
the opposite [20]. Another terminology used in the
continuum is the description of mesh as Lagrangian and
Eulerian meshes. In the Eulerian formulation, the mesh

is �xed in space while the Lagrangian mesh deforms as
the solution continues (like FEM).

The governing equations of interest are conser-
vation of mass and conservation of momentum. The
total and updated Lagrangian formulations are two ap-
proaches to formulating the governing equations. The
total Lagrangian uses the current coordination (xi =
�i(Xi; t)), and the updated Lagrangian formulation
uses the initial coordination system (X = ��1(x; t)).
Moreover, the Cauchy stress tensor (�) is used in
the updated Lagrangian, and the nominal stress (P )
is used in the total Lagrangian formulation [21]. Let
v(X; t) = �x(X; 0)=�t be the velocity �eld de�ned over
the initial coordinate (X); then, the total Lagrangian
formulation of the governing equations is:

�(X; t)J(X; t) = �(X; 0); (3)

rXP + �(X; t)b = �(X; t)
@v
@t
; (4)

where �(X; t) is the material density, J(X; t) is the
determinant of deformation gradient (F ), b is the body
force, and P is the nominal stress tensor [21]. The
position and velocity are presented in the updated
Lagrangian formulation with the current coordinate
system as v(x; t) = �X(x;0)

�t ; X = ��1(x; t), therefore,
the conversation of linear momentum takes the follow-
ing form:

�(x; t)
@v(x; t)
@t

= rx:�(x; t) + �(x; t)b; (5)

where �(x; t) is the Cauchy stress tensor. Because there
is no mass source in the medium [21], we have:

�(x; t) = �(X; t): (6)

The principle of virtual power is the collection of
the weak form of the momentum equation, traction
boundary conditions, and interior traction continuity,
which is used for updated Lagrangian formulation. The
test functions �vi(X; t) and the velocity trial functions
vi(X; t) are used to develop the weak form of governing
equation from the strong from as follows:Z




@(�vi)
@xj

�jid
�
Z



�vi�bid


�
Z

��ri

�vi�rid� +
Z



�vi� _vid
 = 0: (7)

The test and velocity functions are required to meet
the following conditions [21]:

�v(X) 2 u0

u0 = f�v(X)j �v 2 C0(X); �v = 0on�vg; (8)
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v(X; t) 2 u
u = fv(X; t)j v 2 C0(X); v = �von�vg; (9)

where C0(X) is the smoothness or continuity of a
function, and a function has Cn continuity if its nth
derivative is a continuous function. The initial and
boundary conditions are de�ned as follows:

v(X; 0) = v(X); (10)

x(X; t) = x(X); (11)

v(X; t)j�v = �v(X; t); (12)

rj�r = �r = �jinj ; (13)

where �v is the prescribed velocity boundary; r and �r
are the traction and prescribed traction boundary; and
n is the unit normal to the domain surface [21].

2.2. Material Point Method (MPM)
The MPM is a robust numerical method to simulate
large deformations of history-dependent materials [22{
24]. The most important feature of MPM is its
mixed Eulerian-Lagrangian solution scheme [22]. MPM
consists of a background Eulerian grid (grid) and
sets of Lagrangian particles (Figure 1(a)). Bodies are
divided into sub-segments (regions), and the physical
and mechanical properties of these sub-segments are
concentrated into the material points called parti-
cles (Figure 1(a)). The grid in the MPM provides a
framework to process data and integrate the governing
equation [25,26]. There are three phases of calculation
in each time step. At phase one, particle data such
as mass, momentum, and velocity are mapped to the

grid nodes utilizing shape functions. At phase two,
the weak form of governing equations is solved at grid
nodes producing the nodal result �elds (Figure 1(b)).
At phase three, the nodal results update the particle
position and velocity (Figure 1(c)). At the end of each
time step, the grid returns to the initial geometry
(Figure 1(d)).

In this section, the notation of the paper is
presented. In the MPM formulation, there are three
types of variables (Eulerian, Lagrangian, and mixed).
Eulerian variables are de�ned at grid nodes and have
a life span of one computational cycle, like nodal
momentum, velocity, and mass. Eulerian variables
are presented with a subscript uppercase index (e.g.,
vIi). Lagrangian variables are de�ned in particles
speci�cally and are preserved through computation
duration like mass, velocity, stress tensor, and strain
tensor. Lagrangian variables are presented using the p
superscript (Mp for mass and vpi for the velocity of
particle p). Mixed variables are de�ned at grid nodes
for a particular particle. For example, shape functions
and their derivatives are de�ned at grid nodes based
on the particle position. Mixed variables are presented
using a subscript index for nodes and superscript for
particles (e.g., Np

I ).
The major components of the weak form (mass

matrix, internal force vector, and external force vector)
in the updated Lagrangian MPM are:

MI =
npX
p=1

Np
Im

p; (14)

vIi =
npX
p=1

Np
I v

p
i ; (15)

Figure 1. Four cycles of the material point method computation: (a) MP mapping to nodes, (b) nodal solution �eld, (c)
mapping back from nodes to MP, and (d) discarding old grid and generating new one.
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pIi =
npX
p=1

Np
I v

p
im

p; (16)

f int
Ii = �

npX
p=1

@Np
I

@xj
�pji

mp

�p
; (17)

fI iext =
npX
p=1

Np
I b
p
im

p; (18)

where MI is the grid mass matrix, fIiint and fIiext

are internal and external force vectors, MI is the
nodal mass matrix, np represents the total number of
particles, Np

I is the shape function value of particle (p)
at node I, and mp is the mass of the material point p.
Also, vpi is the particle (p) velocity vector, vIi is the
velocity vector of node I, pIi is the momentum vector
of the node I, �pji is the particle p stress tensor, �p is
the density of material point p, and bpi is the particle p
body force.

The nodal acceleration �eld is integrated explic-
itly (phase two). It is customary to use explicit integra-
tion because implementing implicit time integration for
rapid movement problems yields no signi�cant advan-
tage in the MPM [27,28]. In explicit time integration,
the acceleration, velocity, and displacement �elds are
calculated as:

a(t+�t)
Ii = (fext(t)Ii + f int(t))Ii =MI ; (19)

vIi(t+�t) = vIi(t) + aIi(t+�t)�t; (20)

uIi(t+�t) = uIi(t) + vIi(t+�t)�t: (21)

The position, velocity, and stress tensor of material
points are updated from mapping back the nodal result
�eld to particles as:

vip(t+�t) = vip(t) +
InX
I=1

Np
I v

(t+�t)
Ii ; (22)

xp(t+�t)
i = xp(t)i +

InX
I=1

Np
I u

(t+�t)
Ii ; (23)

where xp(t+�t)
i and vp(t+�t)

i are updated position and
velocity vector of material point p, In is the number of
the element nodes (containing), v(t+�t)

Ii is the velocity
vector of node I, and u(t+�t)

Ii is the displacement �eld
of node I.

The stress tensor of material points is integrated
from the Jaumann rate of the stress tensor. The rates
of deformation tensor (D) and the spin tensor (W ) are
extracted from the nodal velocity �eld as [21]:

Lpij =
@vpi
@xj

; (24)

Dp
ij =

1
2

(Lpij + (Lpij)T ); (25)

W p
ij =

1
2

(Lpij � (Lpij)T ); (26)

where Lpij is the velocity derivation, Dp is the rate of
deformation tensor, and W p is the spin tensor of the
material point (p). From spin and rate of deformation
tensors, the rate of Cauchy stress tensor is determined
and integrated to update the stress tensor of particles
for the next time step:

_�pij =
@�pij
@t

=C�jijkl : Dp
kl�W p

ik�
p
kj��pik(WT )kj ; (27)

�p(t+�t) = �p(t) + _�p�t; (28)

where C�jijkl is the Jaumann elastoplastic constitution
matrix, and �p(t+�t) is the updated stress tensor of
particle p. The e�ects of the rigid rotation on the
Cauchy stress tensor of a particle are corrected with the
Jaumann rate of the stress tensor. For example, when
a stressed bar rotates at 90 degrees, the components of
the stress tensor vary from (�x = �0, �y = 0) to (�x =
0; �y = �0). The stress evolved as _� = Cep : D, which
is not valid in the case of 90 degrees rotation because
the rate of deformation tensor is zero and the stress
tensor remains constant [19]. Additional terms in Eq.
(27) are used to eradicate the adverse e�ects of large
rotations or translations e�ects on the stress tensor [21].

2.3. Frictional contact force
The contact procedure is introduced in MPM via the
multi-velocity �eld algorithm [29]. The multi-velocity
�eld generates one background grid for each body
and detects contact nodes, contact force, and contact
direction based on the di�erence in the velocity �eld.
After mapping each body to a speci�ed grid, a global
search is performed at all grid nodes to determine the
contact nodes. A contact node (I) is de�ned as:

(vb1Ii � vb2Ii )nb1Ii > 0; (29)

where vb1Ii is the velocity of body b1 at grid node I and
nb1Ii is the contact normal as:

nbiIi =
npX
p=1

Np;bi
I;i

mp;bi
������ npX

p=1

Np;bi
I;i

mp;bi

����� ; (30)

where Np;b
I;i

is the particle p (form body b) shape
function derivation at node I and, mp;bi is the mass
of the particle P of the body bi.

The contact force is obtained by modifying the
nodal momentum of each body. First, the free momen-
tum p0bi(t+�t)

Ii for each body is calculated as follows:

p0bi(t+�t)
Ii = pbi(t)Ii + (f int;biIi + fext;biIi )�t; (31)
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Figure 2. Obtaining relative displacement in an interface.

where pbi(t)Ii is the momentum vector of the body bi;
f
R
;bi

Ii and fext;biIi are internal and external forces of the
body bi at node I. At all contact nodes, the momentum
�eld must satisfy the impenetrability condition or:

(mb1
I p

b2
Ii �mb2

I p
b1
Ii)n

b2
Ii = 0; (32)

where mbi
I is the mass of body bi at node I, pb2Ii is

the body bi momentum at node I, and nb2Ii is the
contact normal of body b2 at node I. Based on the
impenetrability condition, the total contact force (fc)
of contacting bodies is:

f cIi =[(mb1
I p
0b2(t+�t)
Ii �mb2

I p
0b1(t+�t)
Ii )=

�t(mb1
I +mb2

I )]: (33)

The normal (f cnfIi ) and tangential (fctfIi ) contact forces
are formulated as:

f cnfIi =[(mb1
I p
0b2(t+�t)
Ii �mb2

I p
0b1(t+�t)
Ii )=

�t(mb1
I +mb2

I )]nb2Ii ; (34)

f ctfIi =[(mb1
I p
0b2(t+�t)
Ii �mb2

I p
0b1(t+�t)
Ii )=

�t(mb1
I +mb2

I )][tb2Ii ; (35)

where the contact tangent vector tb1Ii is presented as
follows [30]:

tb2Ii =
(vb2Ii � vb1Ii )� (vb2Ij � vb1Ij)nb2Ijnb2Ii���(vb1Ii � vb2Ii )� (vb1Ij � vb2Ij)nb2Ijnb2Ii

��� : (36)

2.4. Cohesive contact force
The cohesion force between two contacting bodies
mobilizes in small displacement and perishes in large
relative displacement due to degradation. This paper
proposes a new technique to consider the degradation of
cohesive contact force via the MPM. The degradation

force is evaluated via relative nodal displacement of
two contacting bodies. Particles in the vicinity of an
interface (interface particles) represent the surface of
contact and the contact area. The cohesive resisting
force of interface particles on the (speci�ed) grid is:

fcfIi =
npX
p=1

Np
I c
pApi ; (37)

where f cfIi is the cohesive resisting force at grid node
I, cp is the cohesion parameter, and Api is the cross-
section (e.g., interface area) of the particle p which is
aligned with the direction of the motion. The cohesion
parameter needs modi�cation based on the relative
displacement of two contacting bodies or:

cp = f
�X

NP
I u

r
I

�
; (38)

where NP
I is the shape function of the particle p at

node I, and urI is the relative displacement between two
contacting bodies at node I (A and B in Figure 2) as:

urI =
��uAI ��� ��uBI �� : (39)

The relative displacement urI is then mapped back to all
interface particles to change the value of the cohesion
parameter (considering the degradation e�ect).

2.5. Computational plasticity
A detailed formulation of plasticity is out of the scope
of this study, and only essential parts of plasticity used
in this paper are addressed here. Plastic deformation
happens when the stress state of the material passes
the following condition (yield surface) [31]:

f(�) = k; (40)

where f is an arbitrary function of stress and k is
the experimentally plastic threshold. The plastic strain
increment d"pij is proportional to the stress gradient of
the plastic potential function Q as [31]:

d"pij = d�
@Q
@�ij

; (41)

where d� is a proportionality constant (plastic multi-
plier).
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Table 1. Physical properties of benchmarks.

Benchmark Dim (m) Density
(kg/m3)

Friction
coe�cient

Poisson's
ratio

Inclination
angle

1 1.6 2000 Vary 0.3 �=3; �=4
2 1 2000 Vary 0.3 �=6
3 0.1 2000 0.1 0.3 �=6

For earth materials (soil, rock, or concrete), the
Drucker-Prager and Mohr-Coulomb yield criteria are
suitable because they contain the �rst invariant of the
stress tensor. D{P and M{C yield criteria take the
following forms [21,31]:

f(�) = �J1 +
p
J 02 = �; (42)

� = c� �n tan'; (43)

where J1 = �ii is the �rst invariant of stress ten-
sor, J 02 = 0:5�0ij�0ij is the second invariant of the
deviatoric stress tensor, �, � are Drucker-Prager, and
c, ' are Mohr-Coulomb model constants (material
parameters). Conventional geotechnical experiments
produce the Mohr-Coulomb parameters. For obtain-
ing Drucker-Prager parameters from Mohr-Coulomb
constants, yield surface coincidence between the two
mentioned models is necessary. The inner coincidence
of Mohr-Coulomb and Drucker-Prager yield surfaces
results in the following equivalencies [31]:

� =
2 sin'p

3(3 + sin')
;

� =
6c sin'p

3(3 + sin')
: (44)

After yielding, the deformation of a material is both
elastic and plastic. During stress increment, the strain
increment d"ij is divided between the elastic and plastic
strain increment d"pij as:

d"ij = d"eij + d"pij : (45)

By implementing the elastic strain-stress relation and

ow rule in Eq. (40), the general form of the elasto-
plastic stress-strain relation is obtained as:

d"ij =
d�0ij
2�

+
(1� 2�)

E
�ijd�kk + d�

@Q
@�ij

: (46)

To evaluate collective plastic strain on each particle or
to devise a rule for updating plastic threshold (�) in
computational plasticity, the equivalent plastic strain
is used which takes the following form:

d�"p =
r

(
2
3

)d"pijd"
p
ij : (47)

The increment of equivalent plastic strain is added to
the total equivalent plastic strain, which is used further

for hardening computations.

3. Benchmarks

The proposed contact technique is validated via six
benchmarks. Four elastic dynamic contact problems
(rolling sphere, sliding blocks, and failure initiation) are
modeled, and two large deformation failure problems
with elasto-plastic behavior. Properties of elastic
problems are presented in Table 1. All the problems
are simulated using the explicit form of the MPM.

3.1. The rolling sphere
The movement of a rolling sphere on an inclined
frictional plane, with an available closed-form solution,
is the �rst dynamic benchmark [32]. The closed-form
solution is presented for the center of mass displace-
ment alongside the plane axes in two conditions [30]:

x = x0 +
1
2
gt2(sin � � � cos �);

tan � > 3� (Roll and slip); (48.a)

x = x0 +
5
14
gt2(sin �);

tan � � 3� (Roll): (48.b)

To ensure that the two sliding cases are considered
here, two di�erent inclination angles with two di�erent
friction coe�cients are employed (Table 2). Figure 3
shows the numerical results for the sphere center of
mass displacement alongside the plane axis compared
to the closed-form solution. As shown in Figure 3,
MPM simulates this problem accurately.

3.2. The sliding block on a plane
In this section, the sliding of a block on an inclined
frictional plane is considered a benchmark problem

Table 2. The dynamic condition of the rolling sphere for
four trials.

Inclination
angle

Friction
coe�cient

Rolling
condition

�=3 0.2 Slip
�=3 0.6 Pure rolling
�=4 0.1 Slip
�=4 0.4 Pure rolling
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Figure 3. The rolling sphere benchmark: (a) displacement diagram for � = �=4 and (b) displacement diagram for � = �=3.

Figure 4. The sliding block benchmark; closed-form
solution versus the material point method simulation.

Table 3. The computational error for the sliding block
benchmark.

Friction
coe�cient

t = 0:5 s t = 1 s t = 1:5 s t = 2 s

0 0.138% 0.383% 0.472% 0.118%
0.087 0.812% 0.778% 0.380% 0.63%
0.174 0.278% 0.772% 1.060% 1.020%
0.267 1.660% 1.870% 1.650% 1.653%

with a larger contact area. This benchmark is also
carried out by 3D-DDA and 2D-DDA numerical meth-
ods successfully [33{38]. The exact solution in the case
of slip condition is as Eq. (48.a). The displacement of
the block alongside the plane axis and the closed-form
solutions are presented in Figure 4. Table 3 presents
the simulation error for each friction coe�cient.

3.3. The sliding block on a cohesive-frictional
plane

The second benchmark is simulated again with the
frictional-cohesive inclined plane with constant cohe-
sion (100 Pa). Figure 5(a) shows the total value of the
cohesive and frictional forces from the MPM modeling
and the closed-form solution. Figure 5(b) shows the
agreement between the MPM simulation and the exact
solution for the block displacement alongside the plane
axis.

3.4. The failure initiation
A column consisting of two blocks on an inclined
frictional plane is considered stimulating the static and
dynamic behaviors of bodies associated with sliding
and toppling (Figure 6(a)). Zhang et al. (2016) [39]
simulated this problem with the cohesive 3D-DDA
numerical method. This problem is simulated using
deformable blocks in the MPM. The physical properties
of this system are presented in Table 4. The cohesion
and Young's modulus values of the plane are carefully
chosen to ensure that the lower block remains still
and the plane stays undeformed after the impact [39].
Figure 6 presents the displacement of the upper block
and the deformation of the upper block due to impact
is visible (Figure 6(d)).

3.5. Slope failure under gravitational loading
The validation of constitutive equations with emphasis
on the large deformation scheme is carried out via
simulation of slope failure under gravity loading. This
problem has been solved before via the MPM for
cohesive and non-cohesive soils under various body

Table 4. Physical properties of column block system.

Part Dimension
(m)

Density
(kg/m3)

Young's
modulus
(MPa)

Cohesion
value
(Pa)

Friction
coe�cient

Poisson's
ratio

Inclination
angle

Upper block 0.5 2000 2.2 0 0.28 0.25 {
Lower block 1 2000 2.2 0 0.28 0.25 {

Interfaceplane { { 300 1000 0.9 0.25 �=4
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Figure 5. The cohesive-frictional sliding block diagrams: (a) Closed-form solution versus the material point method
predictions and (b) Total cohesive and frictional force versus displacement.

Figure 6. The failure initiation problem: (a) con�gurations, (b) position at t = 0:31 s, (c) position at t = 0:74 s, and (d)
position at t = 0:97 s.

Figure 7. Con�guration of the simple cohesive soil slope
benchmark.

forces and material properties [40]. Here, only the case
of cohesive soil under gravity loading is considered. The
geometry of the slope alongside boundary conditions
is presented in Figure 7. The cohesive soil has
the following material properties: Young's modulus
70 MPa; friction angle 20 degrees; cohesion value
10 kPa (without the cohesion degradation); and the
Poisson ratio 0.3. Non-associative plastic 
ow rule of
Drucker-Prager with no dilatancy and tension strength
of 27.48 kPa is considered for soil material [40].

The model con�guration is as follows: Particle
spacing is 0.5 m, background cell size is 1 m, and the
domain is represented with 19640 material points. In
Figure 8, the equivalent plastic strain and displace-
ment of the slope from MPM modeling and another
study [40] are presented. The agreement between
plastic strain contours and general displacement of slop
is visible, as shown in Figure 8.

3.6. Failure of a slope with non-cohesive
material

Large deformation of non-cohesive slope failure is
selected for the last benchmark. This experiment
was carried out on a slope with arti�cial soil under
a plane strain conditions in [41]. Aluminum bars of
1 to 1.5 mm diameter with 50 mm length and the
density of 2650 kg/m3 are employed to model soil
particles. The block soil sample (200 � 100 � 50 mm)
is formed from aluminum bars con�ned with two 
at
vertical walls. The collapse of the block is initiated
by removing the right wall suddenly. Based on the
shear box test results, the cohesion value and friction
angle of the aluminum-bar assemblage are evaluated
at 0 and 19.8, respectively [41]. A Poisson ratio of 0.3
and a bulk modulus of 0.7 MPa are recommended for
the arti�cial soil [41]. This problem is solved with
a particle spacing of 1.25 mm under gravity loading
of 9.81 m/s2. The Drucker-Prager constitutive model
with the non-associative 
ow rule (zero dilation angle)
is assumed, and parameters are approximated with the
inner coincidence yield surfaces.

The simulated �nal equivalent plastic strain on
the deformed shape of the block is presented in Fig-
ure 9. As shown in Figure 9, the results of the current
study are in agreement with other numerical studies. In
addition, the �nal experimental con�guration is shown
in Figure 9(d). A comparison between the current
study and experimental results for failure line and sur-
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Figure 8. E�ective plastic strain contours or evolution of the shear band; the material point method simulation for: (a)
t = 3:2 s, (c) t = 5:2 s, (e) t = 7:2 s, Results obtained from Huang et al. [40] (2015) as: (b) t = 3:2 s, (d) t = 5:2 s, (f)
t = 7:2 s.

Figure 9. E�ective plastic strain contours: (a) this study, (b) Huang et al. (2015) [40], (c) Bui et al. (2008) [41], the
smoothed particle hydrodynamics simulation, and (d) �nal con�guration of aluminum bars from the experiment [41].

face con�guration is presented in Figure 10. Although
there is agreement between the MPM simulation result
and the experiment, the error in the computation result
arises from the particle discretization and grid crossing
error. Discretizing a medium into �ner particles with
�ner mesh yields better results while imposing a severe
cost on the computation e�ort. The grid crossing error
is another cause of numerical oscillation and error in
the MPM [42].

4. Characterization of vaiont landslide

The geological and geotechnical properties of the
Vaiont landslide are described here. The failure surface
of the landslide is crucial because it controls the
volume of the sliding mass and, therefore, all kinematic

behaviors. Several numerical modeling methods have
investigated the failure surface con�guration [43{45]. It
is generally accepted that the landslide slid on a weak
continuous thin, rich clay layer [10,12,45]. Although
some researchers challenged this assumption [46,47],
solid evidence from road tunnels and other �eld obser-
vations proved that the interface layer was continuous
and contained 50{80% clay minerals [10,41,48{50].

Hendron and Patton (1987) [1] proposed an av-
erage friction angle of 12� for the clay layer based on
experimental data. This value is widely accepted and
consistent with laboratory test results and numerical
investigations [4,43]. During the slide, this residual
friction angle further degraded [1,43]. Ibanez and
Haztor (2018) [43] showed that the degradation during
rapid motion was about 25% of friction angle and
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Figure 10. Final con�guration and failure surface from
the material point method simulation and experiment [41].

recommended a friction coe�cient of 0.16 [1]. The
friction coe�cient of 0.16 was supported by rapid
torsion tests of the clay material from the slide [3]. The
maximum cohesion values of 50 kPa to 150 kPa were
suggested for the clay layer [4,5,50].

5. Simulation of the vaiont slide

This study considers the clay layer as a frictional-
cohesive interface between bodies. Due to the rapid
movement, high-velocity test results are considered in
the model via the linear degradation technique [43].
The initial and residual friction coe�cient values are
considered 0.2 and 0.16 [3,43]. The cohesion value of
the clay layer also varies due to degradation. Because
there is no degradation algorithm for the clay layer in
the literature, a linear degradation curve for the cohe-
sion value is assumed. Bilinear friction and cohesion
degradation laws were adopted from [41] with the rela-
tive degradation displacement of one percent of particle
spacing. Degradation curves of friction coe�cient and
cohesive value are presented in Figure 11.

The Vaiont landslide domain is often considered
as the main sliding body that slides on a rigid base
toward a rigid boundary [4,8,12,45]. In this study,

the Vaiont valley, including the sliding mass and
boundaries, is de�ned as distinct deformable masses
with cohesive-frictional interfaces. First, three bodies
are employed to model the landslide. Then, the
e�ect of several interacting masses on the quality of
results is investigated by modeling the problem as �ve
deformable masses. Finally, the e�ect of rigid boundary
conditions is investigated in a two-mass problem.

5.1. Triple bodies simulation
This section de�nes the Vaiont landslide as three
contacting masses, as shown in Figure 12. The failure
mechanism is de�ned as the movement of body A (main
sliding elastoplastic mass) on body B (elastically de-
formable boundary mass) toward body C (elastoplastic
weathered ancient deposit) [1,8]. Near one million
material points in three structured background grids
are used to represent the contacting bodies. In the
preprocessing stage, marginal particles of each body are

agged as the interface layer (cohesion-friction or pure
friction). Cohesion-friction interfaces are de�ned be-
tween bodies A-C and B-C initially, while the frictional
interface is detected automatically based on the veloc-
ity �eld of each body (explained in Subsection 2.3).
The number of material points for spatial discretization
of contacting bodies is presented in Table 5.

Mechanical properties of the Vaiont valley rock
masses for the model input were obtained from
[4] and [51]. The friction angle, internal cohesion
(Mohr-Coulomb model parameters), Young's modulus,

Figure 12. The Vaiont valley triple bodies representation.

Figure 11. The linear degradation of mechanical properties of the clay layer: (a) Friction coe�cient and (b) Cohesive
value.
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Table 5. The material point method de�nition of the Vaiont landslide.

Parameter Spacing Body A MP
numbers

Body B MP
numbers

Body C MP
numbers

Time step

value 1 (m) 493148 83750 453518 1.20e{6 (s)�

� The time step value is based on recommendations in [18]. The total run-out duration is approximately three months.

Table 6. Material properties of Vaiont landslide bodies after the study of Wolter et al. (2013) [4].

Part Density
(kg/M3)

Young's
modulus
(MPa)

Poisson's
ratio

Internal
friction
angle

Internal
cohesion

Body A 2000{2700 500 0.25 30{45 0.1 (MPa)

Body B 2100{2700 500 0.25 30{40 0.1 (MPa)

Body C 2700 500 0.25 45 0.1 (MPa)

Figure 13. The landslide run-out con�guration: (a) t = 10 s, (b) t = 17:5 s, (c) t = 22:5 s, and (d) t = 33:5 s.

and the Poisson ratio of rock masses used in this
study are presented in Table 6. The Drucker-Prager
yield surface with a tension cut-o� of 0.6 MPa is used
to model all masses in the landslide, and an inner
coincidence approximation of Drucker-Prager with
Mohr-Coulomb yield surfaces is used to obtain the
material model parameters [4].

Figure 13 represents the con�guration of the
Vaiont valley from impact (8 s) to the stable condition
(33.5 s). The �nal con�guration of the Vaiont landslide
from the MPM numerical modeling is presented in
Figure 14 compared to the other numerical studies and
�eld investigations [5,10,11]. As shown in Figure 14,
the MPM result for the �nal con�guration is in better
agreement with �eld investigations. Given that the
Vaiont landslide is a complex and large-scale problem,
it is suitable to check if the calculated results meet
previous investigations into the following issues:

� The landslide duration; based on previous studies,

Figure 14. Final con�guration of the Vaiont valley from
�eld investigations and numerical simulations.

landslide duration is estimated to be between 17 s
and 45 s [1,4,9,11,12,43]. In this study, the main slid-
ing mass (body A in Figure 12) reached the stable
condition after 33.5 s, which is an acceptable value;
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Figure 15. Time-velocity graphs of trial particles during
slide.

� The peak velocity; from numerical simulations
to empirical estimations, the peak velocity of the
landslide is estimated between 25 m/s and 50 m/s
[5,10,12,43]. The mean peak velocity of sliding
mass in this study is predicted as 31.4 m/s, which
is in good agreement with other investigations [43];

� The time-velocity curve of the landslide; the
time-velocity curve of three trial particles (shown in
Figure 12) is captured and presented in Figure 15.
The DDR simulation time-velocity curve of the
Vaiont landslide is presented in Figure 15 [43].
The shape of the time-velocity graph from DDR
analysis (Figure 15) is like the time-velocity curve
(particles A and B in Figure 15) obtained by the
MPM analysis presented. It is noteworthy that
particle C, which is near the failure surface, has a
shorter movement duration as well as a lower peak
velocity than other particles (Figure 15);

� The velocity-displacement curve of the main sliding
body; Henderon and Patton (1987) [1] proposed
analytical velocity-displacement curves of the
landslide for various friction losses due to degrada-
tion. Figure 16 presents the velocity-displacement
curve of particle A from the numerical simulation
versus the analytical estimation [1,43]. As seen
in Figure 16, the MPM landslide displacement is
estimated at 556.47 m which is in good agreement
with the analytical value of 500{600 m [1,43].

5.2. Five masses modeling
Five distinct bodies (considering main faults) are cho-
sen to represent the Vaiont landslide, as shown in
Figure 17 with following features [1,8]: body 1 de�nes
the outer geometry of the valley. Bodies 2, 3, and 4
represent the main sliding part with cohesive-frictional
interfaces. Body 5 represents the weathered saturated
mass of the northern slope [1,8]. Material properties
are considered the same as the triple-mass system in
the previous section.

The result of the simulation is presented in Fig-

Figure 16. Comparison between the velocity-lateral
displacement curve of the analytical modeling for various
friction losses [1] and the material point method result.

Figure 17. Initial con�guration of the Vaiont valley for
�ve interactional masses.

ure 18. Body 4 behaves as follows: after failure, it �lls
the deepest part of the valley and then, it becomes a
frictional-cohesive base for body 3. The upper interface
of body 4 undergoes shear displacement from the tan-
gential component of contact force (from body 3). Also,
body 4 experiences volumetric plastic deformation due
to the normal component of the contact force that
originated from the massive surcharge of bodies 2 and
3. After the main impact, the momentum causes body
2 to move from its original position on body 3. The
run-out duration is 29 seconds with a peak velocity of
34 meters per second in this case. Figure 19 presents
the �nal con�guration of the valley in �ve and three
masses systems. It can be stated that the e�ect of
increasing distinct masses on the �nal con�guration
of the valley is negligible; however, it considerably
increases computation e�orts.

5.3. E�ect of rigid boundary conditions
A simulation of the landslide with rigid boundary
conditions is performed in this section to highlight
the importance of de�ning deformable boundaries.
Approximately 1.6 million particles de�ne the landslide
in two distinct bodies (Figure 20). An elasto-plastic
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Figure 18. The landslide run-out con�guration: (a) t = 0 s, (b) t = 8 s, (c) t = 19 s, (d) t = 24 s, and (e) t = 29 s.

Figure 19. The e�ect of number of masses and rigid
boundaries at �nal con�guration of the Vaiont valley;
Baseline obtained from [1,4].

material (Table 6) is used for the sliding mass, and a
relatively sti� elastic material is used for the boundary.
The results (Figure 19) show that the displacement is
reduced using rigid boundaries. The landslide duration
and peak velocity are obtained at 24 s and 19.9 m
per second, respectively. These values are about 30%
less than the corresponding values in the �rst case
showing the importance of deformable boundaries in
the numerical results, although these values are still in
the acceptable range.

6. Conclusions and remarks

This paper implemented a cohesive-frictional contact
methodology in the Material Point Method (MPM)
to simulate large and rapid deformations. Six nu-
merical large deformation benchmarks were simulated
to validate the contact methodology and constitutive
material laws. Afterward, the Vaiont landslide was
modeled considering three di�erent cases. First, the
landslide was modeled using three contacting masses.
In this case, the �nal con�guration of the slide had
good agreement with �eld investigations. The landslide
duration was estimated to be 33.5 seconds, and the
central sliding mass reached the maximum mean veloc-
ity of 31.4 m/s. In addition, the lateral displacement
of the landslide was calculated as 556.47 m. All
the mentioned parameters were in agreement with the
results of previous studies.

To investigate the e�ect of the number of con-
tacting bodies on results, �ve masses considering the
main faults and beddings were selected as the second
case. Although more realistic behavior from bodies was
observed during failure, no signi�cant improvement in
the �nal con�guration of the valley was encountered.
The third case was devoted to simulating the landslide
with rigid boundary conditions to highlight the role of
deformable boundary conditions in the model. Results
showed that the rigid boundaries caused signi�cant
error in the �nal con�guration of the valley. In

Figure 20. Initial (a) and �nal (b) con�gurations of the Vaiont valley considering rigid boundary conditions.
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addition, it was shown that the error in landslide
duration and peak velocity was about 30%.
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