References:
1. Choi, U.S. "Enhancing thermal conductivity of fluids with nanoparticles, Developments and Applications of Non-Newtonian Flows", Siginer, D.A. andWang, H.P., Eds., (Eds) FED, ASME, New York, 66, pp. 99-105 (1995).
2. Xuan, Y. and Roetzel, W. "Conceptions for heat transfer correlation of nanofluids", Int. J. Heat Mass Transfer, 43, pp. 3701-3707 (2000).
3. Penkavova, V., Tihon, J., and Wein, O. "Stability and rheology of dilute TiO2-water nanofluids", Nanoscale Res Lett, 6, p. 273 (2011).
4. Namburua, P.K., Kulkarni, D.P., Misrab, et al. "Viscosity of copper oxide nanoparticles dispersed in ethylene glycol and water mixture", Exp Therm Fluid Sci, 32, p. 397 (2007).
5. Chang, H., Jwo, C.S., Lo, C.H., et al. "Rheology of CuO nanoparticle suspension prepared by ASNSS", Rev. Adv. Material Sci., 10, pp. 128-132 (2005).
6. Santra, A.K., Sen, S., and Chakraborty, N. "Study of heat transfer due to laminar flow of copper-water nanofluid through two isothermally heated parallel plates", Int J Thermal Sci, 48, pp. 391-400 (2009).
7. Kumar. D.H., Patel, H.E., Kumar, V.R., et al. "Model for conduction in nanofluids", Phys. Rev. Lett., 93 (2004).
8. Prasher, R., Bhattacharya, P., and Phelan, P.E. "Brownian-motion-based convective conductive model for the effective thermal conductivity of nanofluid", ASME J. Heat Transfer, 128, pp. 588-595 (2006).
9. Maiga, S.E.B., Nguyen, C.T., Galanis, N., et al. " Heat transfer behaviours of nanofluids in a uniformly heated tube", Super lattices and Microstructures, 35, pp. 543- 557 (2004).
10. Heris, S.Z., Esfahany, M.N., and Etemad, S.Gh. "Experimental investigation of convective heat transfer of Al2O3/water nanofluid in circular tube", Int. J. Heat Fluid Flow, 28, pp. 203-210 (2007).
11. Rashidi, M.M., Sadri, M., and Sheremet, M.A. "Numerical simulation of hybrid nanofluid mixed convection in a lid-driven square cavity with magnetic field using high-order compact scheme", Nanomaterials, 11(9), p. 2250 (2021).
12. Ma, Y., Mohebbi, R., Rashidi, M.M., et al. "MHD convective heat transfer of Ag-MgO/water hybrid nanofluid in a channel with active heaters and coolers", International Journal of Heat and Mass Transfer, 137, pp. 714-726 (2019).
13. Chand, R., Rana, G., and Hussein, A.K. "On the onset of thermal instability in a low Prandtl number nanofluid layer in a porous medium", J. Appl. Fluid Mech., 8, pp. 265-272 (2015).
14. Navier, C.L.M.H. "Memoire surles du movement des", Mem Acad. Sci. Inst., France, 1(6), pp. 414-416 (1823).
15. Thompson, P.A. and Troian, S.M. "A general boundary condition for liquid flow at solid surfaces", Nature, 389, pp. 360-362 (1997).
16. Mathews, M.T. and Hill, J.M. "Newtonian flow with non-linear Navier boundary condition", Acta Mechanica, 191, pp. 197-217 (2007).
17. Neto, C., Evans, D.R., Bonaccurso, E., et al. "Boundary slip in Newtonian liquids: a review of experimental studies", Rep. Prog. Phys., 68, p. 2859 (2005).
18. Khezzar, L., Filali, A., and Shehhi, M.A. "Flow and heat transfer of FENE-P fluids in ducts of various shapes Effect of Newtonian solvent contribution", J. Non-Newtonian Fluid Mech., 207, pp. 7-20 (2014).
19. Khan, M.W.S. and Ali, N. "Theoretical analysis of thermal entrance problem for blood flow: An extension of classical Graetz problem for Casson fluid model using generalized orthogonality relations", International Communications in Heat and Mass Transfer, 108, p. 104314 (2019).
20. Filali, A. and Khezzar, L. "Numerical simulation of the Graetz problem in ducts with viscoelastic FENEP fluids", Comput. Fluids, 84, pp. 1-15 (2013).
21. Ali, N. and Khan, M.W.S. "The Graetz problem for the Ellis fluid model", Zeitschrift fur Naturforschung A (ZNA), 74, pp. 15-24 (2019).
22. Jambal, O., Shigechi, T., Davaa, T.G., et al. "Effects of viscous dissipation and fluid axial heat conduction on heat transfer for non-Newtonian fluids in ducts with uniform wall temperature", Int. Communications in Heat and Mass Transfer, 32, pp. 1165-1173 (2005).
23. Cess, R.D. and Schaffer, E.C. "Heat transfer to laminar flow between parallel plates with a prescribed heat flux", Appl. Sci. Res., A8, p. 339 (1959).
24. Khan, M.W.S. and Ali, N. "Thermal entry flow of power-law fluid through ducts with homogeneous slippery wall(s) in the presence of viscous dissipation", International Communications in Heat and Mass Transfer, 120, p. 105041 (2021).
25. Khan, M.W.S., Ali, N., and Asghar, Z. "Thermal and rheological effects in a classical Graetz problem using a nonlinear Robertson-Stiff fluid model", Heat Transfer, 50, pp. 2321-2338 (2021).
26. Khan, M.W.S., Ali, N., and Asghar, Z. "Mathematical modelling of classical Graetz-Nusselt problem for axisymmetric tube and at channel using Carreau fluid model: a numerical benchmark study", Zeitschrift fur Naturforschung A (ZNA), 76, pp. 589-603 (2021).
27. Khan, M.W.S., Ali, N., and Sajid, M. "The Graetz- Nusselt problem for the curved channel using spectral collocation method", Phys. Scr., 96, p. 055204 (2021).
28. Khan, M.W.S. and Ali, N. "Thermal entry flow problem for Giesekus fluid inside an axis-symmetric tube through isothermal wall condition: a comparative numerical study between exact and approximate solution", Zeitschrift fur Naturforschung A, 76(11), pp. 973-984 (2021).
29. Bird, R.B., Stewart, W.E., and Lightfoot, E.N., Transport Phenomena, John Wiley & Sons (1960).
30. Hsu, C.J. "Theoretical solutions for low-Peclet-number thermal-entry-region heat transfer in laminar flow through concentric annuli", Int. J. Heat Mass Transfer, 13, pp. 1907-1924 (1970).
31. Niu, J., Fu, C., and Tan, W. "Slip-flow and heat transfer in non-Newtonian fluid in a microtube", Plos One, 7, p. e37274 (2012).
32. Buongiorno, J. "Convective transport in nanofluids", J Heat Transfer, 128, pp. 240-250 (2006).
33. Masuda, H., Ebata, A., Teramae, K., et al. "Alteration of thermal conductivity and viscosity of liquid by dispersing ultra-fine particles (dispersion of c-Al2O3,SiO2 and TiO2 ultra-fine particles)", Netsu Bussei (Japan), 4, pp. 227-233 (1993).
34. Sheikh, A.H., Beck, J.V., and Amos, D.E. "Axial heat conductioin effects in the entrance region of parallel plate ducts", Int. J Heat Mass Transfer, 51, pp. 5811- 5822 (2008).
35. Lahjomri, J., Quabarra, A., and Alemany, A. "Heat transfer by laminar hartmann flow in thermal entrance region with a step change in wall temperatures: the Graetz problem extended", Int. J Heat Mass Transfer, 45, pp. 1127-1148 (2002).
36. Johnston, P.R. "A solution method for the graetz problem for non-Newtonian fluids with Dirichlet and Neumann boundary conditions", Math. Comp. Modelling, 19, pp. 1-19 (1994).
37. Putra, N., Roetzel, W., and Das, S.K. "Natural convection of nanofluids", Heat Mass Trans, 39, pp. 775-784 (2003).