References:
1. Balmain, A. "Cancer genetics: from Boveri and Mendel to microarrays", Nat. Rev. Cancer, 1(1), pp. 77-82 (2001). DOI: 10.1038/35094086.
2. Siegel, R.L., Miller, K.D., Fuchs, H.E., et al. "Cancer statistics, 2022", CA. Cancer J. Clin., 72(1), pp. 7-33 (2022). DOI: https://doi.org/10.3322/caac.21708.
3. Nyst, H.J., Tan, I.B., Stewart, F.A., et al. "Is photodynamic therapy a good alternative to surgery and radiotherapy in the treatment of head and neck cancer?", Photodiagnosis Photodyn. Ther., 6(1), pp. 3-11 (2009). DOI: https://doi.org/10.1016/j.pdpdt.2009.03.002.
4. Nguyen, M.-H., Pham, N.-D., Dong, B., et al. "Radioprotective activity of curcumin-encapsulated liposomes against genotoxicity caused by Gamma Cobalt-60 irradiation in human blood cells", Int. J. Radiat. Biol., 93(11), pp. 1267-1273 (Nov. 2017). DOI: 10.1080/09553002.2017.1380329.
5. Batta, A., Kalra, B.S., and Khirasaria, R. "Trends in FDA drug approvals over last 2 decades: An observational study.", J. Fam. Med. Prim. Care, 9(1), pp. 105-114 (Jan. 2020). DOI: 10.4103/jfmpc.jfmpc 578 19.
6. Makovec, T. "Cisplatin and beyond: molecular mechanisms of action and drug resistance development in cancer chemotherapy", Radiol. Oncol., 53(2), pp. 148- 158 (2019). DOI: 10.2478/raon-2019-0018.
7. Lin, K.H., Rutter, J.C., Xie, A., et al. "Using antagonistic pleiotropy to design a chemotherapy-induced evolutionary trap to target drug resistance in cancer", Nat. Genet., 52(4), pp. 408-417 (2020). DOI:10.1038/s41588-020-0590-9.
8. Leary, M., Heerboth, S., Lapinska, K., et al. "Sensitization of drug resistant cancer cells: A matter of combination therapy", Cancers, 10(12), pp. 483-501 (2018). DOI: 10.3390/cancers10120483.
9. Mathur, P., Rawal, S., Patel, B., et al. "Oral delivery of anticancer agents using nanoparticulate drug delivery system", Curr. Drug Metab., 20(14), pp. 1132-1140 (2019). DOI: 10.2174/1389200220666191007154017.
10. Agarwal, C., Singh, R.P., Dhanalakshmi, S., et al. "Silibinin upregulates the expression of cyclindependent kinase inhibitors and causes cell cycle arrest and apoptosis in human colon carcinoma HT-29 cells", Oncogene, 22(51), pp. 8271-8282 (2003). DOI:10.1038/sj.onc.1207158.
11. Dheeraj, A., Tailor, D., Singh, S.P., et al. "Chapter 10 - Anticancer Attributes of Silibinin: Chemoand Radiosensitization of Cancer", in Cancer Sensitizing Agents for Chemotherapy, 2, A.C. Bharti and B.B. Aggarwal, Eds., Academic Press, pp. 199-
220 (2018). DOI: https://doi.org/10.1016/B978-0-12-812373-7.00010-3.
12. Taheri, M., Ghafouri-Fard, S., Najafi, S., et al. "Hormonal regulation of telomerase activity and hTERT expression in steroid-regulated tissues and cancer", Cancer Cell Int., 22(1), p. 258 (2022). DOI:10.1186/s12935-022-02678-9.
13. Tiwari, P. and Mishra, K. "Silibinin in cancer therapy: A promising prospect", Cancer Res. Front., 1(3), pp.303-318 (2015). DOI: 10.17980/2015.303.
14. Takke, A. and Shende, P. "Nanotherapeutic silibinin: An insight of phytomedicine in healthcare reformation", Nanomedicine Nanotechnology, Biol. Med., 21, p. 102057 (2019). DOI: https://doi.org/10.1016/j.nano.2019.102057.
15. Hamdy, R., Mostafa, A., Abo Shama, N.M., et al. "Comparative evaluation of avonoids reveals the superiority and promising inhibition activity of silibinin against SARS-CoV-2", Phyther. Res., 36(7), pp. 2921-2939 (Jul. 2022). DOI: https://doi.org/10.1002/ptr.7486.
16. Yazdi Rouholamini, S.E., Moghassemi, S., Maharat, Z., et al. "Effect of silibinin-loaded nanoniosomal coated with trimethyl chitosan on miRNAs expression in 2D and 3D models of T47D breast cancer cell line", Artif. Cells, Nanomedicine, Biotechnol., 46(3), pp. 524-535 (May 2018). DOI: 10.1080/21691401.2017.1326928.
17. Bajpai, S., Tiwary, S.K., Sonker, M., et al. "Recent advances in nanoparticle-based cancer treatment: A review", ACS Appl. Nano Mater., 4(7), pp. 6441-6470(Jul. 2021). DOI: 10.1021/acsanm.1c00779.
18. Alamdari, S.G., Amini, M., Jalilzadeh, N., et al. "Recent advances in nanoparticle-based photothermal therapy for breast cancer", J. Control. Release, 349, pp. 269-303 (2022). DOI: https://doi.org/10.1016/j.jconrel.2022.06.050.
19. Gupta, B. and Kim, J.O. "Recent progress in cancer immunotherapy approaches based on nanoparticle delivery devices", J. Pharm. Investig., 51(4), pp. 399- 412 (2021). DOI: 10.1007/s40005-021-00527-x.
20. Pivetta, T.P., Botteon, C.E.A., Ribeiro, P.A., et al. "Nanoparticle systems for cancer phototherapy: An overview", Nanomaterials, 11(11), pp. 3132-3169(2021). DOI: 10.3390/nano11113132.
21. Dang, Y. and Guan, J. "Nanoparticle-based drug delivery systems for cancer therapy", Smart Mater. Med., 1, pp. 10-19 (2020). DOI:https://doi.org/10.1016/j.smaim.2020.04.001.
22. Ebrahimnezhad, Z., Zarghami, N., Keyhani, M., et al. "Inhibition of hTERT gene expression by silibininloaded PLGA-PEG-Fe3O4 in T47D breast cancer cell line", Bioimpacts, 3(2), pp. 67-74 (2013). DOI:10.5681/bi.2013.005.
23. Varghese, L., Agarwal, C., Tyagi, A., et al. "Silibinin efficacy against human hepatocellular carcinoma", Clin. Cancer Res. an Off. J. Am. Assoc. Cancer Res., 11(23), pp. 8441-8448 (Dec. 2005). DOI:10.1158/1078-0432.CCR-05-1646.
24. Ferreira, D.D.S., Faria, S.D., Lopes, S.C. de A., et al."Development of a bone-targeted pH-sensitive liposomal formulation containing doxorubicin: physicochemicalcharacterization, cytotoxicity, and biodistribution evaluation in a mouse model of bone metastasis", Int. J. Nanomedicine, 11, pp. 3737-3751 (Aug. 2016). DOI: 10.2147/IJN.S109966.
25. Rao, X., Huang, X., Zhou, Z., et al. "An improvement of the 2 (-delta delta CT) method for quantitative realtime polymerase chain reaction data analysis", Biostat. Bioinforma. Biomath., 3(3), pp. 71-85 (Aug. 2013).
26. Ge, L., Shao, W., Zhang, Y., et al. "RNAi targeting of hTERT gene expression induces apoptosis and inhibits the proliferation of lung cancer cells", Oncol. Lett., 2(6), pp. 1121-1129 (Nov. 2011). DOI: 10.3892/ol.2011.388.
27. Xiang, B. and Cao, D.-Y., Preparation of Drug Liposomes by Thin-Film Hydration and Homogenization BT- Liposome-Based Drug Delivery Systems, W.-L. Lu and X.-R. Qi, Eds. Berlin, Heidelberg: Springer, Berlin Heidelberg, pp. 25-35 (2021). DOI: 10.1007/978-3-662- 49320-5 2.
28. Bashyal, S., Seo, J.-E., Keum, T., et al. "Development, characterization, and Ex vivo assessment of elastic liposomes for enhancing the buccal delivery of insulin", Pharmaceutics, 13(4), pp. 565-581 (2021).DOI: 10.3390/pharmaceutics13040565.
29. Sang, R., Stratton, B., Engel, A., et al. "Liposome technologies towards colorectal cancer therapeutics", Acta Biomater., 127, pp. 24-40 (2021). DOI:https://doi.org/10.1016/j.actbio.2021.03.055.
30. Gabizon, A.A. "Liposome circulation time and tumor targeting: implications for cancer chemotherapy", Adv. Drug Deliv. Rev., 16(2), pp. 285-294 (1995).DOI: https://doi.org/10.1016/0169-409X(95)00030-B.
31. Liu, D., Mori, A., and Huang, L. "Role of liposome size and RES blockade in controlling biodistribution and tumor uptake of GM1-containing liposomes", Biochim. Biophys. Acta, 1104(1), pp. 95-101 (Feb. 1992). DOI:10.1016/0005-2736(92)90136-a.
32. Hu, Y.-J., Ju, R.-J., Zeng, F., et al., Liposomes in Drug Delivery: Status and Advances BT - Liposome-Based Drug Delivery Systems, W.-L. Lu and X.-R. Qi,Eds., Berlin, Heidelberg: Springer Berlin Heidelberg,pp. 3-24 (2021). DOI: 10.1007/978-3-662-49320-5 1.
33. Tavakoli, F., Jahanban-Esfahlan, R., Seidi, K., et al. "Effects of nano-encapsulated curcumin-chrysin on telomerase, MMPs and TIMPs gene expression in mouse B16F10 melanoma tumour model", Artif. Cells, Nanomedicine, Biotechnol., 46(sup2), pp. 75-86 (Nov. 2018). DOI: 10.1080/21691401.2018.1452021.
34. Petrini, M., Lokerse, W.J.M., Mach, A., et al. "Effects of surface charge, PEGylation and functionalization with dipalmitoyl phosphatidyldiglycerol on liposomecell interactions and local drug delivery to solid tumors via thermosensitive liposomes", Int. J. Nanomedicine, 16, pp. 4045-4061 (2021). DOI: 10.2147/IJN.S305106.
35. Lotfi-Attari, J., Pilehvar-Soltanahmadi, Y., Dadashpour, M., et al. "Co-delivery of curcumin and chrysin by polymeric nanoparticles inhibit synergistically growth and hTERT gene expression in human colorectal cancer cells", Nutr. Cancer, 69(8), pp. 1290- 1299 (2017). DOI: 10.1080/01635581.2017.1367932.
36. Subhan, M.A., Yalamarty, S.S.K., Filipczak, N., et al. "Recent advances in tumor targeting via EPR effect for cancer treatment", J. Pers. Med., 11(6) (Jun. 2021). DOI: 10.3390/jpm11060571.
37. Sahibzada, M.U.K., Sadiq, A., Khan, S., et al. "Fabrication, characterization and in vitro evaluation of silibinin nanoparticles: an attempt to enhance its oral bioavailability.", Drug Des. Devel. Ther., 11, pp. 1453-1464 (2017). DOI: 10.2147/DDDT.S133806.
38. Ghalehkhondabi, V., Soleymani, M., and Fazlali, A. "Folate-targeted nano-micelles containing silibinin as an active drug delivery system for liver cancer therapy", J. Drug Deliv. Sci. Technol., 61, p. 102157 (2021). DOI: https://doi.org/10.1016/j.jddst.2020.102157.
39. Wu, J.-W., Lin, L.-C., Hung, S.-C., et al. "Analysis of silibinin in rat plasma and bile for hepatobiliary excretion and oral bioavailability application", J. Pharm. Biomed. Anal., 45(4), pp. 635-641 (2007).DOI: https://doi.org/10.1016/j.jpba.2007.06.026.
40. Trucillo, P. "Drug carriers: classification, administration, release profiles, and industrial approach", Processes, 9(3), pp. 470-488 (2021). DOI: 10.3390/pr9030470.
41. De Leo, V., Milano, F., Agostiano, A., et al. "Recent advancements in polymer/liposome assembly for drug delivery: From surface modifications to hybrid vesicles", Polymers, 13(7), pp. 1027-1051 (2021). DOI:10.3390/polym13071027.
42. Sawaftah, N.A., Paul, V., Awad, N., et al. "Modeling of anti-cancer drug release kinetics from liposomes and micelles: A review", IEEE Trans. Nanobioscience, 20(4), pp. 565-576 (2021). DOI: 10.1109/TNB.2021.3097909.
43. Large, D.E., Abdelmessih, R.G., Fink, E.A., et al. "Liposome composition in drug delivery design, synthesis, characterization, and clinical application", Adv. Drug Deliv. Rev., 176, p. 113851 (2021). DOI:https://doi.org/10.1016/j.addr.2021.113851.
44. Guimaraes, D., Cavaco-Paulo, A., and Nogueira, E., "Design of liposomes as drug delivery system for therapeutic applications", Int. J. Pharm., 601, p. 120571 (2021). DOI: https://doi.org/10.1016/j.ijpharm.2021.120571.
45. Chatran, M., Pilehvar-Soltanahmadi, Y., Dadashpour, M., et al. "Synergistic anti-proliferative effects of metformin and silibinin combination on T47D breast cancer cells via hTERT and cyclin D1 inhibition", Drug Res. (Stuttg)., 68(12), pp. 710-716 (Dec. 2018). DOI: 10.1055/a-0631-8046.
46. Javidfar, S., Pilehvar-Soltanahmadi, Y., Farajzadeh, R., et al. "The inhibitory effects of nanoencapsulated metformin on growth and hTERT expression in breast cancer cells", J. Drug Deliv. Sci. Technol., 43, pp. 19-26 (2018). DOI: https://doi.org/10.1016/j.jddst.2017.09.013.
47. Kim, S.-H., Kim, K.-Y., Yu, S.-N., et al. "Silibinin induces mitochondrial NOX4-mediated endoplasmic reticulum stress response and its subsequent apoptosis", BMC Cancer, 16(1), p. 452 (2016). DOI:10.1186/s12885-016-2516-6.
48. Zheng, N., Liu, L., Liu, W., et al. "Crosstalk of ROS/RNS and autophagy in silibinin-induced apoptosis of MCF-7 human breast cancer cells in vitro", Acta Pharmacol. Sin., 38(2), pp. 277-289 (2017). DOI: 10.1038/aps.2016.117.
49. Tsai, C.-C., Chuang, T.-W., Chen, L.-J., et al. "Increase in apoptosis by combination of metformin with silibinin in human colorectal cancer cells", World J. Gastroenterol., 21(14), pp. 4169-4177 (Apr. 2015).DOI: 10.3748/wjg.v21.i14.4169.
50. Hardwick, J.M. and Soane, L. "Multiple functions of BCL-2 family proteins", Cold Spring Harb. Perspect. Biol., 5(2), pp. 1-22 (2013). DOI: 10.1101/cshperspect. a008722.
51. Warren, C.F.A., Wong-Brown, M.W., and Bowden, N.A. "BCL-2 family isoforms in apoptosis and cancer", Cell Death Dis., 10(3), p. 177 (2019). DOI:10.1038/s41419-019-1407-6.
52. Brentnall, M., Rodriguez-Menocal, L., De Guevara, R.L., et al. "Caspase-9, caspase-3 and caspase-7 have distinct roles during intrinsic apoptosis", BMC Cell Biol., 14(1), p. 32 (2013). DOI: 10.1186/1471-2121-14-32.
53. Allan, L.A. and Clarke, P.R. "Apoptosis and autophagy: Regulation of caspase-9 by phosphorylation", FEBS J., 276(21), pp. 6063-6073 (Nov. 2009). DOI:https://doi.org/10.1111/j.1742-4658.2009.07330.x.
54. Asadi, M., Shanehbandi, D., Asvadi Kermani, T., et al. "Expression level of caspase genes in colorectal cancer", Asian Pac. J. Cancer Prev., 19(5), pp. 1277-1280 (May 2018). DOI: 10.22034/APJCP.2018.19.5.1277.
55. Jelinek, M., Balusikova, K., Schmiedlova, M., et al. "The role of individual caspases in cell death induction by taxanes in breast cancer cells", Cancer Cell Int., 15(1), p. 8 (2015). DOI: 10.1186/s12935-015-0155-7.
56. Russo, A., Cardile, V., Graziano, A.C.E., et al. Involvement of Bax and Bcl-2 in induction of apoptosis by essential oils of three Lebanese salvia species in human prostate cancer cells", Int. J. Mol. Sci., 19(1) (Jan. 2018). DOI: 10.3390/ijms19010292.
57. Carneiro, B.A. and El-Deiry, W.S. "Targeting apoptosis in cancer therapy", Nat. Rev. Clin. Oncol., 17(7), pp. 395-417 (Jul. 2020). DOI: 10.1038/s41571-020-0341-y.
58. Zavari-Nematabad, A., Alizadeh-Ghodsi, M., Hamishehkar, H., et al. "Development of quantum-dotencapsulated liposome-based optical nanobiosensor for detection of telomerase activity without target amplification", Anal. Bioanal. Chem., 409(5), pp. 1301-1310 (Feb. 2017). DOI: 10.1007/s00216-016-0058-z.
59. Pirmoradi, S., Fathi, E., Farahzadi, R., et al. "Curcumin affects adipose tissue-derived mesenchymal stem cell aging through TERT gene expression", Drug Res. (Stuttg)., 68(4), pp. 213-221 (Apr. 2018). DOI:10.1055/s-0043-119635.
60. Liang, Q., Wang, X., and Chen, T. "Resveratrol protects rabbit articular chondrocyte against sodium nitroprusside-induced apoptosis via scavenging ROS", Apoptosis, 19(9), pp. 1354-1363 (Sep. 2014). DOI:10.1007/s10495-014-1012-1.