References:
1. Anick, D., Mitra, D., and Sondhi, M.M. "Stochastic theory of a data-handling system with multiple sources", Bell Syst. Tech. J., 61, pp. 1871-1894 (1982). DOI: 10.1002/j.1538-7305.1982.tb03089.x.
2. Elwalid, A.I. and Mitra, D. "Analysis and design of rate-based congestion control of high speed networks, I: Stochastic fluid models, access regulation", Queueing Syst., 9, pp. 29-63 (1991).
3. Kapoor, S. and Dharmaraja, S. "Applications of fluid queues in rechargeable batteries", In: Applied Probability and Stochastic Processes, Joshua, V., Varadhan, S., Vishnevsky, V. (Eds), Infosys Science Foundation Series, pp. 91-101, Springer, Singapore (2020). https://doi.org/10.1007/978-981-15-5951-8 7.
4. Mitra, D. "Stochastic theory of a fluid model of producers and consumers coupled by a bu er", Adv. Appl. Probab., 20(3), pp. 646-676 (1988).
5. Latouche, G. and Taylor, P.G. "A stochastic fluid model for an ad hoc mobile network", Queueing Syst., 63, pp. 109-129 (2009). DOI: 10.1007/s11134-009-9153-6.
6. Bekker, R. and Mandjes, M. "A fluid model for a relay node in an ad hoc network: The case of heavy-tailed input", Math. Methods Oper. Res., 70, pp. 357-384 (2009). DOI: 10.1007/s00186-008-0272-3.
7. Stern, T.E. and Elwalid, A.I. "Analysis of separable Markov-modulated rate models for informationhandling systems", Adv. Appl. Probab., 23(1), pp. 105- 139 (1991). DOI: https://doi.org/10.2307/1427514.
8. Knessl, C. and Morrison, J.A. "Heavy-traffic analysis of a data-handling system with many sources", SIAM J. Appl. Math., 51(1), pp. 187-213 (1991).
9. El-Baz, A.H., Tarabia, A.M.K., and Darwiesh, A.M. "Cloud storage facility as a fluid queue controlled by Markovian queue", Probab. Eng. Inf. Sci., 36(2), pp. 1-17 (2020).
10. Virtamo, J. and Norros, I. "Fluid queue driven by an M=M=1 queue", Queueing Syst., 16, pp. 373-386 (1994). https://doi.org/10.1007/BF01158963.
11. Adan, I. and Resing, J. "Simple analysis of a fluid queue driven by an M=M=1 queue", Queueing Syst., 22, pp. 171-174 (1996). https://doi.org/10.1007/BF01159399.
12. Parthasarathy, P.R., Vijayashree, K.V., and Lenin, R.B. "An M=M=1 driven fluid queue - continued fraction approach", Queueing Syst., 42, pp. 189-199 (2002). https://doi.org/10.1023/A:1020157021703.
13. Barbot, N. and Sericola, B. "Stationary solution to the fluid queue fed by an M=M=1 queue", J. Appl. Probab., 39, pp. 359-369 (2002). DOI: 10.1239/jap/1025131431.
14. Konovalov, V. "Fluid queue driven by a GI=G=1 queue, stable problems for stochastic models", J. Math. Sci., 91, pp. 2971-2930 (1998).
15. Kapoor, S. and Dharmaraja, S. "On the exact transient solution of fluid queue driven by a birth death process with specific rational rates and absorption", Opsearch, 52(4), pp. 746-755 (2015) https://doi.org/10.1007/s12597-015-0199-4.
16. Kapoor, S., Dharmaraja, S., and Arunachalam, V. "Transient solution of fluid queue modulated by two independent birth-death processes", Int. J. Oper. Res., 36(1), pp. 1-11 (2019). DOI: 10.1504/IJOR.2019.10023654.
17. Maki, D.P. "On birth-death processes with rational growth rates", SIAM J. Math. Anal., 7, pp. 29-36 (1976). https://doi.org/10.1137/0507004.
18. Lenin, R.B. and Parthsarathy, P.R. "A computational approach for fluid queues driven by truncated birthdeath processes", Methodol. Comput. Appl. Probab., 2, pp. 373-392 (2000). https://doi.org/10.1023/A:1010010201531.
19. Kapoor, S. and Dharmaraja, S. "Steady state analysis of fluid queues driven by birth death processes with rational rates", Int. J. Oper. Res., 37(4), pp. 562-578 (2020). https://doi.org/10.1504/IJOR.2020.105768.
20. Van Doorn, E.A. and Scheinhardt, W.R.W. "A fluid queue driven by an infinite-state birth-death process", Teletraffic Science and Engineering, 2, Part A, pp. 465-475 (1997). https://doi.org/10.1016/S1388-3437(97)80050-9.
21. Parthasarathy, P.R. and Vijayashree, K.V. "Fluid queues driven by birth and death processes with quadratic rates", Int. J. Comput. Math., 80, pp. 1385- 1395 (2003). https://doi.org/10.1080/0020716031000120836.
22. Arunachalam, V., Gupta, V., and Dharmaraja, S. "A fluid queue modulated by two independent birthdeath processes", Comput. Math. with Appl., 60(8), pp. 2433-2444 (2010). DOI: 10.1016/j.camwa.2010.08.039.
23. Ammar, S.I. "Analysis of anM=M=1 driven fluid queue with multiple exponential vacations", Appl. Math. Comput., 227, pp. 227-334 (2014). DOI: 10.1016/j.amc.2013.10.084.
24. Zhang, H. and Shi, D. "The M=M=1 queue with Bernoulli-schedule-controlled vacation and vacation interruption", Int. J. Inf. Manage., 20, pp. 579-587 (2009).
25. Xu, X., Geng, J., Liu, M., et al. "Stationary analysis for fluid model driven by the M/M/C working vacation queue", J. Math. Anal. Appl., 403, pp. 423-433 (2013). https://doi.org/10.1016/j.jmaa.2013.02.021.
26. Mao, B.W., Wang, F.W., and Tian, N.S. "Fluid model driven by an M=M=1 queue with multiple vacations and N-policy", J. Appl. Math. Comput., 38, pp. 119- 131 (2012).
27. Xu, X., Guo, H., Zhao, Y., et al. "The fluid model driven by the M=M=1 queue with working vacations and vacation interruption", J. Comput. Inf. Syst., 8, pp. 7643-7651 (2012).
28. Mao, B., Wang, F., and Tian, N. "Fluid model driven by an M=M=1=N queue with multiple exponential vacations", J. Comput. Inf. Syst., 6, pp. 1809-1816 (2010). DOI:10.1109/ITCS.2010.138.
29. Vijayashree, K.V., and Anjuka, A. "Stationary analysis of a fluid queue driven by an M=M=1 queue with working vacation", Qual. Technol. Quant. Manag., 13, pp. 1-22 (2016).
30. Vijayalakshmi, T. and Thangaraj, V. "Transient analysis of a fluid queue driven by a chain sequenced birth and death process with catastrophes", Int. J. Math. Oper., 8(2), pp. 164-184 (2016). http://localhost:8080/jspui/handle/1/84782.
31. Vijayalakshmi, T. and Thangaraj, V. "A fluid model driven by an M=M=1 queue with catastrophe and restoration time", Int. J. Appl. Math., 26, pp. 123- 135 (2013). DOI: 10.12732/ijam.v26i2.1.
32. Vijayashree, K.V. and Anjuka, A. "Stationary analysis of a fluid queue driven by an M=M=1=N queue with disaster and subsequent repair", Int. J. Oper. Res., 31(4), pp. 461-477 (2018). DOI: 10.1504/IJOR.2018.10011462.
33. Ammar, S.I. "Fluid queue driven by an M=M=1 disasters queue", Int. J. Comput. Math., 91, pp. 1497- 1506 (2014). https://doi.org/10.1080/00207160.2013.844799.
34. Ammar, S.I. "Fluid M=M=1 catastrophic queue in a random environment", RAIRO Oper. Res., 55, pp. 2677-2690 (2021). https://doi.org/10.1051/ro/2020100.
35. Kumar, B.K., Vijayakumar, A., and Sophia, S. "Transient analysis for state-dependent queues with catastrophes", Stoch. Anal. Appl., 26, pp. 1201-1217 (2008).
36. Guillemin, F. and Sericola, B. "On the fluid queue driven by an ergodic birth and death process", Telecommunications Networks Current Status and Future Trends, pp. 379-404 (2012).
37. Henrici, P. "Applied and computational complex analysis", Special Functions, Integral Transforms, Asymptotics, Continued Fractions, 2, John Wiley & Sons, Inc. (1977). https://doi.org/10.1080/07362990802405786.
38. Flajolet, P. and Guillemin, F. "The formal theory of birth-and-death processes, lattice path combinatorics and continued fractions", Adv. Appl. Probab., 32(3), pp. 750-778 (2000). DOI: 10.1017/S0001867800010247.
39. Guillemin, F. and Pinchon, D. "Excursions of birth and death processes, orthogonal polynomials, and continued fractions", J. Appl. Probab., 36(3), pp. 752- 770 (1999). https://www.jstor.org/stable/3215439.