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Abstract. This paper investigates an in�nite bu�er 
uid queueing model driven by a
state-dependent birth-death process prone to catastrophes. We use the Laplace-Stieltjes
transform and continued fraction approaches to establish precise expression for the joint
probability of the content of the bu�er and the number of customers in an M/M/1 queueing
model. The importance of the proposed system is that, in numerous practical situation,
the service facility has defence mechanisms in place to deal with long waits. Under
the strain of a signi�cant backlog of work, the servers may improve their service rate.
Therefore, considering the state-dependent character of queueing systems is of relevance.
For example, congestion control technologies prevent long queues forming in computer and
communication systems by adjusting packet transmission speeds based on the length of
the queue (of packets) at the source or destination. Theoretical results are supported by
numerical illustrations.

© 2024 Sharif University of Technology. All rights reserved.

1. Introduction

Analysis of 
uid queueing systems has received signi�-
cant attention of researchers over the past few years due
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to their wide spread applications in the �eld of produc-
tion and manufacturing systems, tra�c management
on high-speed telecommunication networks, actuarial
science, environmental systems, inventory systems, and
population growth. A continuous 
uid enters and exits
a storage device, known as a bu�er, at a randomly
changing rate regulated by an external stochastic en-
vironment in the 
uid queue. Stochastic 
uid 
ow
models are useful instruments for evaluating numerous
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performance measures including the distribution and
moments of the 
uid level in the area of congestion
control, communication networks, risk processes, and
other related systems. Some signi�cant works on 
uid

ow models and their applications can be found in
Anick et al. [1], Elwalid and Mitra [2], Kapoor and
Dharmaraja [3], Mitra [4], Latouche and Taylor [5],
Bekker and Mandjes [6], Stern and Elwalid [7], Knessl
and Morrison [8], El-Baz et al. [9], and related refer-
ences therein.

The behavior of 
uid queueing models examined
by several researchers can be classi�ed into two types;
one is the stationary and another being the non-
stationary. Virtamo and Norros [10] derived as a
simple integral formula for the steady-state bu�er
content distribution using the spectral decomposition
technique for the M/M/1 
uid queue. Later, Adan
and Resing [11] have shown the results of Virtamo
and Norros [10] in the form of the modi�ed Bessel
function of the �rst kind of order one by observing
at embedded time points. Parthasarathy et al. [12]
carried out explicit expressions for the steady-state
distribution of bu�er occupancy and bu�er content of
a 
uid queueing model driven by an M/M/1 queue
based on the continued fraction technique. Barbot
and Sericola [13] derived the solution of bu�er level
and state of the M/M/1 
uid queueing model us-
ing the generating function approach associated with
exponential matrix. Konovalov [14] studied a more
general GI/GI/1 
uid queueing model, where 
uid

ows out of the bu�er at a constant rate. Kapoor
and Dharmaraja [15] obtained an explicit transient
solution of the 
uid queue driven through birth death
process via the continued fraction approach. Kapoor et
al. [16] studied the transient distribution of the bu�er
content of 
uid queueing model driven by two distinct
restricted state birth-death processes. More works
on 
uid queueing models with stationary and non-
stationary behaviors can be found in Maki [17], Lenin
and Parthasarathy [18], Kapoor and Dharmaraja [19],
van Doorn and Scheinhardt [20], Parthasarathy and
Vijayashree [21], Arunachalama et al. [22], and to name
a few.

In recent years, many researchers investigated
on 
uid queueing systems subject to catastrophes or
vacations. The analysis of 
uid queueing system with
vacations can be found in Ammar [23], Zhang and
Shi [24], Xu et al. [25], Mao et al. [26], Xu et al. [27],
Mao et al. [28], Vijayashree and Anjuka [29], and
related references therein. Moreover, many researcher
discussed the behaviour of 
uid queueing systems
with catastrophes. Vijayalakshmi and Thangaraj [30]
derived a simple closed form transient state probability
distribution for a 
uid queueing model driven with an
M/M/1 queue, where a chain sequence shows birth and
death rates, as well as disasters. Vijayalakshmi and

Thangaraj [31] used the continued fraction technique to
explore the transient state probability distribution for a

uid queueing model driven through an M/M/1 queue
with disaster and restoration time. Vijayashree and
Anjuka [32] investigated a 
uid queueing model based
on an M/M/1/N queue that has been damaged and
needs to be repaired. Ammar [33] developed precise
expression of the stationary distribution function of the
bu�er content for a 
uid queue driven via M/M/1 disas-
ter queue. Further, Ammar [34] studied the stationary
behavior of M/M/1 
uid queueing model in a random
setting with catastrophes. He presented the bu�er
content distribution as a modi�ed Bessel function of
the �rst kind via generating function technique.

On the other hand, analysis of state-dependent

uid queueing models is not straightforward although
they are more appropriate for the application. How-
ever, it appears that very little research has been done
on such 
uid queues that are in
uenced through birth
and death process. Maki [17] derived the distribution
function of a birth and death process in which the
denominator and numerator are generic polynomials,
where the rates of birth and death are rational func-
tions of the state of the process. Parthasarathy and
Vijayashree [21] carried out the distribution of bu�er
content of a 
uid queueing model driven through
birth and death process with quadratic arrival and
service rates on a limited state space. Kapoor and
Dharmaraja [19] established the stationary behaviour
of a 
uid queueing model with rational birth and death
rates driven through a limited birth death process.
Kumar et al. [35] studied a state-dependent queue-
ing system with catastrophes using continued fraction
technique. Guillemin and Sericola [36] investigated the
behaviour of a 
uid queueing model controlled with a
general ergodic birth and death process using spectral
theory in the area of Laplace-Stieltjes Transform (L.-
S.T.).

To the best of our expertise, no attempt has
been made to analyze the behavior of bu�er content
distribution in a 
uid queueing model driven via state
dependent birth-death process subject to catastrophes.
The interest to investigate the state dependent na-
ture of 
uid queueing systems with catastrophes is
due to its importance in the �eld of computer and
communication systems, where transmission rates of
packets may be controlled based on current packets at
source or destination. The e�ect of catastrophes (for
example, virus attack) in computer system which is not
protected by any antivirus software leads to the system
sudden damage and all the works in progress are to
be lost. In this study, we discuss the 
uid queueing
model subject to catastrophes in which arrival and
service rates may depend on the number of customers
present in the system. Based on the L.-S.T. and the
continued fraction techniques, we derive the steady
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state joint probability of the content of the bu�er and
the number of customers in an M/M/1 
uid queueing
model. Numerical results are presented in the form of
graphs to show the e�ect of model parameters on the
stationary bu�er content distribution.

The remaining sections of the paper are arranged
as follows. Section 2 provides assumption and ex-
planation of the model. The stationary solution of
the model is examined in Section 3. The numerical
depiction of the bu�er content distribution for various
model parameters is presented in Section 4. Section 5
concludes the paper.

2. Model description

Consider a 
uid queue operated by a state-dependent
M/M/1 queueing system with catastrophe. The cus-
tomers arrive in accordance with a Poisson process with
a state-dependent arrival rate �2j , j = 0; 1; 2; :::, when
the system contains j customers before his arrivals.
The state-dependent service time of a customer is
exponentially distributed with service rate �2j�1, j =
1; 2; 3; :::, when the system contains j customers just
before his service starts. Further, the catastrophe oc-
curs according to exponential distribution with rate 
.
When the system encounters a disaster, all customers,
including the one now in service, are lost, and the
system becomes idle. During the busy period of the
server, the 
uid accumulates in an in�nite capacity

uid bu�er which we can be interpreted as a 
uid
reservoir at a constant rate r > 0. During the server's
idle phase, the credit bu�er depletes the 
uid at a
consistent rate r0 < 0 as long as the bu�er is not empty.
Let N(t), t � 0, denote the number of customers in the
background state-dependent birth-death process with
catastrophe at time t. If C(t), t � 0, denotes the
content of the 
uid bu�er at time t, then f(N(t); C(t))g
is a two-dimensional Markov process with a unique
stationary distribution under appropriate stability con-
dition. The mean aggregate input rate should be
negative, that is, r0p0 + r

P1
j=1 pj < 0, to ensure that

the process f(N(t); C(t)); t � 0g remains stable, where
pj , j 2 f0; 1; 2; :::g signi�es the stationary probability of
j customers in the background state-dependent M/M/1
queueing system with catastrophe. The rate at which
the content of the 
uid bu�er changes over time t is
given by:

dC(t)
dt

=

8><>:0; N(t) = 0; C(t) = 0
r0; N(t) = 0; C(t) > 0
r; N(t) > 0; C(t) > 0

The steady-state combined probability distribution
function of the Markov process f(N(t); C(t)); t � 0g
is de�ned as:

Fj(u) = lim
t!1PfN(t) = j; C(t) � ug;

t � 0; u � 0; j � 0;

with boundary conditions F0(0) = a, 0 < a < 1, needs
to be determined, Fj(0) = 0, j � 1, Fj(1) = pj , j � 0,
and r0F0(u) + r

P1
j=1 Fj(u) = 1, u > 0.

3. Analysis of the model

In this section, we use the L.-S.T., power series
and continued fraction to determine the stationary
solution of the model. The steady-state Kolmogorov
di�erential-di�erence equations for the Markov process
f(N(t); C(t)); t � 0g are obtained by monitoring the
states of the system at time epochs t and t+dt. Hence,
we have:

r0
dF0(u)
du

= �(�0 + 
)F0(u) + �1F1(u) + 
; (1)

r
dFj(u)
du

= �(�2j + �2j�1 + 
)Fj(u)

+�2j�2Fj�1(u) + �2j+1Fj+1(u);

j � 1: (2)

To determine the constant a, adding Eqs. (1) and (2),
we obtain:

r0
dF0(u)
du

+ r
1X
j=1

dFj(u)
du

= 0: (3)

Integrating Eq. (3) with respect to u over 0 to 1, we
have:

r0(p0 � a) + r
1X
j=1

pj = 0;

which yields:

a =
(r0 � r)p0 + r

r0
;

where pj , j � 0, can be achieved by solving the
following equations:

0 = �(�0 + 
)p0 + �1p1 + 
; (4)

0 = �(�2j + �2j�1 + 
)pj + �2j�2pj�1 + �2j+1pj+1;

j � 1; (5)

subject to the normalization condition:
1X
j=0

pj = 1; (6)

for the background state-dependent M/M/1 queueing
system with catastrophe.
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From Eq. (5), for given �j , j � 0 and 
, we can
express pj , j � 2, in terms of p0 and p1. Using these
values of pj , j � 2, in Eqs. (4) and (6), we get two
independent equations in two unknowns p0 and p1.
Solving these two independent equations, we get the
values of p0 and p1. Finally, pj , j � 2, can be obtained
recursively from Eq. (5).

De�ne the L.-S.T. of Fj(u) as:eFj(s) =
Z 1

0
e�suFj(u)du; Re(s) � 0: (7)

Now, multiply Eqs. (1) and (2) by e�su and integrating
them over 0 to 1, using Eq. (7), we have:

r0s eF0(s)=�(�0 + 
) eF0(s)+ar0+�1 eF1(s)+


s
; (8)

rs eFj(s) = �(�2j + �2j�1 + 
) eFj(s) + �2j�2 eFj�1(s)

+�2j+1 eFj+1(s); j � 1: (9)

Multiplying r0F0(u) + r
P1
n=1 Fn(u) = 1 by e�su and

integrating over 0 to 1, using Eq. (7), we obtain:

r0 eF0(s) + r
1X
j=1

eFj(s) =
1
s
: (10)

Using Eq. (10) in Eq. (8) and simplifying, we obtain:

eF0(s) =
a+ 


r0s�
s+ 


r

�
+ �0

r0 � �1
r0
eF1(s)eF0(s)

: (11)

Further, from Eq. (9) for j � 1 after repeated
substitution, we obtained Eq. (12) as shown in Box I.

Using Eq. (12) for j = 1 in Eq. (11), we obtained
Eq. (13) as shown in Box II.

One may note here that the J-fractions (or Jacobi
fractions) Eqs. (12) and (13) can be represented as a
S-fraction in the form of:

�(z) =
1
z

1 +
c0
z

1+
c1
z

1+
c2
z

1+���

: (14)

Theorem 1. According to the property of S-fraction,
see [37{39], if the solution of Jacobi-type continued
fraction Eq. (12) can be expressed in the form of formal
power series of 1

s+ 

r

, i.e.:

eFj(s)eFj�1(s)
=
�2j�2

r

1X
m=0

(�1)mH(m; j)
(s+ 


r )m+1 ;

j = 1; 2; 3; : : : ; (15)

then the values of H(m; j) are given by:

H(0; j) = 1; j = 1; 2; 3; : : : ; (16)

H(1; j) =
1
r

2jX
i1=2j�1

�i1 ; j = 1; 2; 3; : : : ; (17)

H(m; j) =
1
rm

2jX
i1=2j�1

�i1
i1+1X

i2=2j�1

�i2
i2+1X

i3=2j�1

�i3

eFj(s)eFj�1(s)
=

�2j�2
r�

s+ 

r

�
+
�
�2j�1+�2j

r

�� �2j+1
r

eFj+1(s)eFj(s)
=

�2j�2
r�

s+ 

r

�
+
�
�2j�1+�2j

r

�� �2j�2j+1
r2

(s+ 

r )+

��2j+1+�2j+2
r

�� �2j+2�2j+3
r2

(s+ 

r )+

��2j+3+�2j+4
r

�
����

: (12)

Box I

eF0(s) =
a+ 


r0s�
s+ 


r

�
+ �0

r0 �
�0�1
r0r

(s+ 

r )+(�1+�2

r )�
�2�3
r2

(s+ 

r )+(�3+�4

r )�
�4�5
r2

(s+ 

r )+(�5+�6

r )����

: (13)

Box II
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:::
im�1+1X
im=2j�1

�im ; m = 2; 3; 4; :::;

j = 1; 2; 3; :::: (18)

Proof. We prove the above results by mathematical
induction on m for every j. Now, using Eq. (15) in
Eq. (12), we have the equation as shown in Box III,
which can be written as:" 1X

m=0

(�1)mH(m; j)
(s+ 


r )m+1

#�
1 +

�
�2j�1 + �2j

r

�
1

(s+ 

r )

��2j�2j+1

r2

1X
m=0

(�1)mH(m; j+1)
(s+ 


r )m+2

�
=

1
(s+ 


r )
:
(19)

Now, collecting the coe�cient of 1
(s+ 


r )m , m =
1; 2; 3; :::, from both the sides of Eq. (19), we obtain:

H(0; j) = 1; j = 1; 2; 3; : : : ; (20)

H(1; j) =
1
r

2jX
i1=2j�1

�i1 ; j = 1; 2; 3; : : : ; (21)

H(m; j)=
�
�2j�1 + �2j

r

�
H(m� 1; j)

+
�2j�2j+1

r2

m�2X
k=0

H(k; j + 1)H(m� 2� k; j);
m = 2; 3; 4; : : : ; j = 1; 2; 3; : : : : (22)

Using Eqs. (20) and (21) in Eq. (22) for m = 2; 3 and
simplifying, we obtain:

H(2; j)=
1
r2

2jX
i1=2j�1

�i1
i1+1X

i2=2j�1

�i2 ; j=1; 2; 3; : : : :

H(3; j) =
1
r3

2jX
i1=2j�1

�i1
i1+1X

i2=2j�1

�i2
i2+1X

i3=2j�1

�i3 ;

j = 1; 2; 3; : : : :

Hence, Eq. (18) holds for m = 2 and m = 3.
We now assume that Eq. (18) holds true for all

non-negative integers up to m� 1, i.e.:

H(m� 1; j) =
1

rm�1

2jX
i1=2j�1

�i1
i1+1X

i2=2j�1

�i2

i2+1X
i3=2j�1

�i3 � � �
im�2+1X

im�1=2j�1

�im�1 : (23)

Further, it can be shown by mathematical induction
that:
m�2X
k=0

H(k; j + 1)H(m� 2� k; j) =
1

rm�2

2j+2X
i1=2j�1

�i1

i1+1X
i2=2j�1

�i2 � � �
im�3+1X

im�2=2j�1

�im�2 ; m � 4; (24)

provided Eq. (18) is true for any non-negative integer
up to m� 1. Using Eqs. (23) and (24) in Eq. (22), we
obtain:

H(m; j) =
�
�2j�1 + �2j

rm

� 2jX
i1=2j�1

�i1
i1+1X

i2=2j�1

�i2

i2+1X
i3=2j�1

�i3 � � �
im�2+1X

im�1=2j�1

�im�1

+
�2j�2j+1

rm

2j+2X
i1=2j�1

�i1
i1+1X

i2=2j�1

�i2 ;

i2+1X
i3=2j�1

�i3 � � �
im�3+1X

im�2=2j�1

�im�2 ;

=
�2j�1

rm

2jX
i1=2j�1

�i1
i1+1X

i2=2j�1

�i2
i2+1X

i3=2j�1

�i3 � � �

im�2+1X
im�1=2j�1

�im�1 +
�2j

rm

2j+1X
i1=2j�1

�i1
i1+1X

i2=2j�1

�i2

i2+1X
i3=2j�1

�i3 � � �
im�2+1X

im�1=2j�1

�im�1 ; (25)

1X
m=0

(�1)mH(m; j)
(s+ 


r )m+1 =
1

(s+ 

r ) +

�
�2j�1+�2j

r

�� �2j�2j+1
r2

1P
m=0

(�1)mH(m;j+1)
(s+ 


r )m+1

:

Box III



1154 S.I. Ammar et al./Scientia Iranica, Transactions D: Computer Science & ... 31 (2024) 1149{1158

=
1
rm

2jX
i1=2j�1

�i1
i1+1X

i2=2j�1

�i2
i2+1X

i3=2j�1

�i3

� � �
im�1+1X
im=2j�1

�im ; j = 1; 2; 3; :::: (26)

Thus, the result is true for all m � 1.

Theorem 2. The solution of Jacobi-type continued
Eq.(11) can be expressed in the following way:

F0(u) = ae� 
ur
1X
m=0

(�1)mT (m; 0)um

m!

+


r0r

1X
m=0

(�1)mT (m; 0)
m!

Im(u); (27)

where Im(u) =
R u

0 e� 
yr ymdy is possible to evaluate as:

I0(u) =
r



�
1� e� 
ur � ;

Im(u) =
mr


Im�1(u)� rum



e� 
ur ; m = 1; 2; 3; : : : :

and the values of T (m; 0) are given by:

T (0; 0) = 1; (28)

T (1; 0) = b0; (29)

T (m; 0) = b0
1X

i1=0

bi1
i1+1X
i2=0

bi2 � � �
im�2+1X
im�1=0

bim�1 ;

m = 2; 3; 4; : : : : (30)

where i0 = 0, b0 = �0
r0 , and bj = �j

r , j = 1; 2; 3; :::.

Proof. According to the property of S-fraction,
see [37{39], the Jacobi-type continued fraction (13)
can be represented as formal power series of 1

s+ 

r

with
explicit coe�cients such as:

eF0(s) =
�
a+



r0rs

� 1X
m=0

(�1)mT (m; 0)
(s+ 


r )m+1 : (31)

Using Eq. (15), for j = 1, and Eq. (31) in Eq. (11), we
have:" 1X

m=0

(�1)mT (m; 0)
(s+ 


r )m+1

#"�
s+



r

�
+
�0

r0

��0�1

r0r

1X
m=0

(�1)mH(m; 1)
(s+ 


r )m+1

#
= 1: (32)

Now, collecting the coe�cient of 1
(s+ 


r )m , m = 0; 1;
2; :::, from both the sides of Eq. (32), we obtain:

T (0; 0) = 1; (33)

T (1; 0) =
�0

r0
; (34)

T (m; 0) =
�0

r0

"
T (m� 1; 0) +

�1

r

m�2X
j=0

T (j; 0)H(m

�2� j; 1)

#
; m = 2; 3; 4; : : : : (35)

Substitute m = 2; 3 in Eq. (35) and simplifying, we
obtain:

T (2; 0) =
�0

r0

�
�0

r0
+
�1

r

�
= b0

1X
i1=0

bi1 ;

T (3; 0) = b0

"
b0

1X
i1=0

bi1 + b1
2X

i1=0

bi1

#
= b0

1X
i1=0

bi1
i1+1X
i2=0

bi2 :

Assume that the result Eq. (30) holds true for all non-
negative integers up to m� 1, i.e.:

T (m� 1; 0) = b0
1X

i1=0

bi1
i1+1X
i2=0

bi2 � � �
im�3+1X
im�2=0

bim�2 :
(36)

Further, it can be shown by mathematical induction
that:
m�2X
j=0

T (j; 0)H(m� 2� j; 1) =
2X

i1=0

bi1
i1+1X
i2=0

bi2 � � �

im�3+1X
im�2=0

bim�2 ; m � 4; (37)

provided Eq. (30) is true for any non-negative integer
up to m� 1. Using Eqs. (36) and (37) in Eq. (35), we
obtain:

T (m; 0) = b0

"
b0

1X
i1=0

bi1
i1+1X
i2=0

bi2 � � �
im�3+1X
im�2=0

bim�2

+b1
2X

i1=0

bi1
i1+1X
i2=0

bi2 � � �
im�3+1X
im�2=0

bim�2

#

= b0
1X

i1=0

bi1
i1+1X
i2=0

bi2 � � �
im�2+1X
im�1=0

bim�1 :
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Thus, the result is true for all m � 1.
Now, taking the inverse Laplace transform of

Eq. (31), we have the desired result.

Theorem 3. The steady-state joint probability dis-
tribution function Fj(u), j = 1; 2; :::, u > 0, can be
written as:

Fj(u) =
��0�2 : : : �2j�2

rj
�"

ae� 
ur

1X
m=0

(�1)mA(m; j)um+j

(m+ j)!

+


r0r

1X
m=0

(�1)mA(m; j)
(m+ j)!

Im+j(u)

#
; j � 1;

(38)

where:

A(m; 1) =
mX
r=0

H(r; 1)T (m� r; 0); m � 0; (39)

A(m; j)=
mX
r=0

H(r; j)A(m�r; j�1); m�0; j�2:
(40)

Proof. Using Eq. (31) in Eq. (15) and after repeated
substitution, we obtain:

eFj(s) =
��0�2 : : : �2j�2

rj
��

a+


rr0s

�
1X
m=0

(�1)mA(m; j)
(s+ 


r )m+j+1 ; j � 1: (41)

Now, taking the inverse Laplace transform of Eq. (41)
we have the desired result.

According to the S-fraction property,
see [11,12,25,34], the stationary probability
distribution of the bu�er content for the 
uid model
under discussion is given by:

F (u) = PfC � ug = 1�
1X
j=1

Fj(u); u � 0: (42)

4. Numerical illustration

This section shows how varying values of model pa-
rameters a�ect the bu�er content distribution of a

uid queueing model operated via an M/M/1 queue
with catastrophe. For this purpose, the interarrival
and service times are assumed to be exponentially
distributed with parameters � and �, respectively. We
further assume that the disaster occurs at the service
facility as a Poisson process with an occurrence rate of

Figure 1. Demonstrates the in
uence of the arrival rate
on F (u) with � = 1:3, 
 = 0:7; r = 4, and r0 = �2:5.

Figure 2. Illustrates the e�ect of service rate on F (u)
with � = 0:9, 
 = 0:7; r = 4, and r0 = �2:5.


. Moreover, we assume that Fj(0) = 0; j = 1; 2; :::
and F0(0) = 0:03. The bu�er content distribution's
behavior in comparison to the bu�er content u is
depicted in Figure 1 for � = 1:3, 
 = 0:7, r = 4,
and r0 = �2:5. It is noticed that F (u) increases in a
monotonic manner when the bu�er content u increases.
In addition, we can see in Figure 1 that the bu�er
content distribution grows as the arrival rate � rises.
Figure 2 shows how the bu�er content distribution
F (u) behaves in relation to the bu�er content u for
� = 0:9, 
 = 0:7, r = 4, and r0 = �2:5. The
performance of the bu�er content distribution F (u) in
relation to the bu�er content u is depicted in Figure 3
for � = 1, � = 1:5, r = 4, and r0 = �2:5. It is
also observed in Figures 2 and 3 that F (u) increases
monotonically with the increase of bu�er content u.
On the contrary, we noticed in Figures 2 and 3 that the
bu�er content distribution decrease with the increase
of the service rate � and disaster rate 
, respectively.

5. Conclusion

In this study, we investigated a stationary 
uid queue
operated by a state-dependent birth-death process
that is prone to catastrophes. We developed precise
analytical formulas in terms of power series coe�cients
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Figure 3. Shows the impact of the catastrophe rate on
F (u) with � = 1, � = 1:5; r = 4, and r0 = �2:5.

for the combined probability of the bu�er content and
the number of customers in an M/M/1 queueing model.
Numerical illustrations are employed to support these
theoretical insights.
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