1. Liberzon, D., Switching in Systems and Control, T. Basar, Bikhauser Boston (2003). https://doi.org/10.1007/978-1-4612-0017-8.
2. Deaecto, G.S., Geromel, J.C., Garcia, F.S., et al. "Switched affine systems control design with application to DC-DC converters", IET Control Theory Appl., 4(7), pp. 1201-1210 (2009). DOI: 10.1049/ietcta. 2009.0246.
3. Baldi, S., Papachristodoulou, A., and Kosmatopoulos, E.B. "Adaptive pulse width modulation design for power converters based on affine switched systems", Nonlinear Anal. Hybrid Syst., 30, pp. 306-322 (2018). https://doi.org/10.1016/j.nahs.2018.07.002.
4. Yoshimora, V.L., Assuncao, E., Pires da Silva, E.R., et al. "Observer-based control design for switched affine systems and applications to DCDC converters", Journal of Control, Automation and Electrical Systems, 24(4), pp. 535-543 (2013). https://doi.org/10.1007/s40313-013-0044-z.
5. Beneux, G., Riedinger, P., Daafouz, J., et al. "Adaptive stabilization of switched affine systems with unknown equilibrium points: application to power converters", Automatica, 99, pp. 82-91 (2019). https://doi.org/10.1016/j.automatica.2018.10.015.
6. Hejri, M., Giua, A., and Mokhtari, H. "On the complexity and dynamical properties of mixed logical dynamical systems via an automaton-based realization of discrete-time hybrid automaton", Int. J. Robust Nonlinear Control, 28(16), pp. 4713-4746 (2018). https://doi.org/10.1002/rnc.4278.
7. Hejri, M. and Mokhtari, H. "On the well-posedness, equivalency and low-complexity translation techniques of discrete-time hybrid automaton and piecewise affine systems", Sci. Iran., Trans. D, Computer Science and Electrical Eng., 29(2), pp. 693-729 (2022). DOI: 10.24200/sci.2019.53308.3177.
8. Deaecto, G.S. and Geromel, J.C. "Stability analysis and control design of discrete-time switched affine systems", IEEE Trans. Autom. Control, 62(8), pp. 4058-4065 (2017). DOI: 10.1109/TAC.2016.2616722.
9. Egidio, L.N., and Deaecto, G.S. "Novel practical stability conditions for discrete-time switched affine systems", IEEE Trans. Autom. Control, 64(11), pp. 4705-4710 (2019). DOI: 10.1109/TAC.2019.2904136.
10. Albea Sanchez, C., Garcia, G., Sabrina, H., et al. "Practical stabilisation of switched affine systems with dwell-time guarantees", IEEE Trans. Autom. Control, 64(11), pp. 4811-4817 (2019). DOI: 10.1109/TAC.2019.2907381.
11. Hetel, L. and Fridman, E. "Robust sampled-data control of switched affine systems", IEEE Trans. Autom. Control, 58(11), pp. 2922-2928 (2013). DOI: 10.1109/TAC.2013.2258786.
12. Hauroigne, P., Riedinger, P., and Iung, C. "Switched affine systems using sampled-data controllers: robust and guaranteed stabilization", IEEE Trans. Autom. Control, 56(12), pp. 2929-2935 (2011). DOI:10.1109/TAC.2011.2160598.
13. Xu, X., Zhai, G., and He, S. "Some results on practical stabilizability of discrete-time switched affine systems", Nonlinear Anal. Hybrid Syst., 4(1), pp. 113-121 (2010). https://doi.org/10.1016/j.nahs.2009.08.005.
14. Xu, X. and Zhai, G. "Practical stability and stabilization of hybrid and switched systems", IEEE Trans. Autom. Control, 50(11), pp. 1897-1903 (2005). DOI: 10.1109/TAC.2005.858680.
15. Xu, X., Zhai, G. and He, S. "On practical asymptotic stabilizability of switched affine systems", Nonlinear Anal. Hybrid Syst., 2(1), pp. 196-208 (2008). https://doi.org/10.1016/j.nahs.2007.07.003.
16. Hejri, M. "On the global practical stabilization of discrete-time switched affine systems: application to switching power converters", Sci. Iran., Trans. D, Computer Science and Electrical Eng., 28(3), pp. 1621-1642 (2021). DOI: 10.24200/SCI.2020.55427.4217.
17. Hejri, M. "Global practical stabilization of discretetime switched affine systems via switched Lyapunov functions and state-dependent switching functions", Sci. Iran., Trans. D, Computer Science and Electrical Eng., 28(3), pp. 1606-1620 (2021). DOI: 10.24200/sci.2020.54524.3793.
18. Deaecto, G.S., Souza, M., and Geromel, J.C. "Chattering free control of continuous-time switched linear systems", IET Control Theory Appl., 8(5), pp. 348- 354 (2014). DOI: 10.1049/iet-cta.2013.0065.
19. Blondel, V.D. and Tsitsiklis, J.N. "A survey of computational complexity results in systems and control", Automatica, 36, pp. 1249-1274 (2000). https://doi.org/10.1016/S0005-1098(00)00050-9.
20. Till, J., Engell, S., Panek, S., et al. "Applied hybrid system optimization: An empirical investigation of complexity", Control Eng. Pract., 12(10), pp. 1291- 1303 (2004). https://doi.org/10.1016/j.conengprac.2004.04.003.
21. Zhu, Y., Zhong, Z., Basin, M.V., et al. "A discriptor system approach to stability and stabilization of discrete-time switched PWA systems", IEEE Trans. Autom. Control, 63(10), pp. 3456-3463 (2018). DOI: 10.1109/TAC.2018.2797173.
22. Zhu, Y. and Zheng, W.X. "Multiple Lyapunov functions analysis approach for discrete-time-switched piecewise-affine systems under dwell-time constraints", IEEE Trans. Autom. Control, 65(5), pp. 2177-2184 (2020). DOI: 10.1109/TAC.2019.2938302.
23. Bemporad, A., Torrisi, F.D., and Morari, M. "Discrete-time hybrid modeling and verification of the batch evaporator process benchmark", Eur. J. Control, 7(4), pp. 382-399 (2001). https://doi.org/10.3166/ejc.7.382-399.
24. Liao, F., Zhu, Y., and Zhou, D. "Observer-based fault estimation for a class of discrete-time switched affine systems: An application to the dc-dc converter", J. Franklin Inst., 358, pp. 7992-8011 (2021). https://doi.org/10.1016/j.jfranklin.2021.08.001.
25. Blondel, V. and Tsitsiklis, J.N. "NP-Hardness of some linear control design problems", SIAM J. Control and Optim., 35(6), pp. 2118-2127 (1997). https://doi.org/10.1137/S0363012994272630.
26. Hejri, M. "Global practical stabilization of discretetime switched affine systems via a general quadratic Lyapunov function and a decentralized ellipsoid", IEEE/CAA J. Autom. Sin., 8(11), pp. 1837-1851 (2021). DOI: 10.1109/JAS.2021.1004183.
27. Chiu, W.-Y. "Method of reduction of variables for bilinear matrix inequality problems in system and control designs", IEEE Trans. Syst. Man Cybern.: Syst., 47(7), pp. 1241-1256 (2017). DOI: 10.1109/TSMC.2016.2571323.
28. Bolzern, P. and Spinelli, W. "Quadratic stabilization of a switched affine system about a nonequilibrium point", In Proceedings of the 2004 American Control Conference. Boston, Massachusetts: IEEE, June 30-July 2 2004, pp. 3890-3895 (2004). DOI: 10.23919/ACC.2004.1383918.
29. Deaecto, G.S. and Santos, G.C. "State feedback H1 control design of continuous-time switcheda ffine systems", IET Control Theory Appl., 9(10), pp. 1511-1516 (2014). https://doi.org/10.1049/ietcta. 2014.0153.
30. Deaecto, G.S. "Dynamic output feedback H1 control of continuous-time switched affine systems", Automatica, 71, pp. 44-49 (2016). https://doi.org/10.1016/j.automatica.2016.04.022.
31. Poznyak, A., Polyakov, A., and Azhmyakov, V. Attractive Ellipsoids in Robust Control, T. Basar, Ed., Birkhauser (2014).
https://doi.org/10.1007/978-3-319- 09210-2.
32. Perez, C., Azhmyakov, V., and Poznyak, A. "Practical stabilization of a class of switched systems: dwell-time approach", IMA J. Math. Control Inf., 32(4), pp. 689- 702 (2015). DOI: 10.1093/imamci/dnu011.
33. Khalil, H. Nonlinear Systems, Prentice Hall, third edition (2002).
34. Lakshmikantham, V., Leela, S., and Martynyuk, A.A., Practical Stability of Nonlinear Systems, World Scientific (1990). https://doi.org/10.1142/1192.
35. Hejri, M. "Correction to 'Global practical stabilization of discrete-time switched affine systems via a general quadratic Lyapunov function and a decentralized ellipsoid", IEEE/CAA Journal of Automatica Sinica, 9(12), 2200 (2022). https://doi.org/10.1109/JAS.2022.106145.
36. Boyd, S., El Ghaoui, L., Feron, E., et al. Linear Matrix Inequalities in Systems and Control Theory", Society for Industrial and Applied Mathematics, SIAM (1994).
37. Lofberg, J. "YALMIP: A toolbox for modeling and optimization in MATLAB", IEEE International Symposium on Computer Aided Control Systems Design, Taipei, Taiwan, pp. 284-289 (2004). DOI: 10.1109/CACSD.2004.1393890.
38. Duan, G.-R. and Yu, H.-H. LMIs in Control Systems: Analysis, Design and Applications, CRC Press, Taylor and Francis Group (2013). https://doi.org/10.1201/b15060.
39. Kamri, D., Bourdais, J., and Larbes, C. "Practical stabilization for piecewise-affine systems: A BMI approach", Nonlinear Anal. Hybrid Syst., 6, pp. 859-870 (2012). https://doi.org/10.1016/j.nahs.2012.01.001.
40. Chang, Y., Zhai, G., Fu, B., et al. "Quadratic stabilization of switched uncertain linear systems: a convex combination approach", IEEE/CAA J. Autom. Sin., 6(5), pp. 1116-1126 (2019). DOI: 10.1109/JAS.2019.1911681.
41. Kocvara, M. and Stingl, M. "PENBMI Users Guide (Version 2.1)", www.penopt.com (2006).
42. Chen, T. and Francis, B., Optimal Sampled-Data Control Systems, Springer (1995).https://doi.org/10.1007/978-1-4471-3037-6.
43. Kazimierczuk, M.K. Pulse-Width Modulated DC-DC Power Converters, 2nd Ed., John Wiley and Sons, Ltd (2016). DOI: 10.1002/9780470694640.
44. Fujioka, H., Kao, C.-Y., Almer, S., et al. "Robust tracking with H1 performance for PWM systems", Atomatica, 45, pp. 1808-1818 (2009). DOI: 10.1016/j.automatica.2009.03.026.
45. Gupta, P. and Patra, A. "Hybrid mode-switched control of DC-DC boost converter circuits", IEEE Trans. Circuits Syst. II Express Briefs, 52(11), pp. 734-738 (2005). DOI: 10.1109/TCSII.2005.852189.
46. Berkovich, Y. and Ioinovici, A. "Large-signal stabilityoriented design of boost regulators based on a Lyapunov criterion with nonlinear integral", IEEE Trans. Circuits Syst. I, Fundam. Theory, 49(11), pp. 1610- 1619 (2002). DOI: 10.1109/TCSI.2002.803350.
47. Hejri, M. and Mokhtari, H. "Hybrid modeling and control of a DC-DC boost converter via Extended Mixed Logical Dynamical systems (EMLDs)", IEEE 5th Power Electronics, Drive Systems and Technologies Conference (PEDSTC), pp. 373-378 (2014). DOI: 10.1109/PEDSTC.2014.6799403.
48. Hejri, M. "Global hybrid modeling and control of a DC-DC buck-boost converter via mixed logical dynamical systems", (In Persian), Iranian Journal of Electrical and Computer Engineering, 17(1), pp. 1-12 (2019). DOR: 20.1001.1.16823745.1398.17.1.1.4.
49. Deaecto, G.S., Geromel, J.C., Garcia, F.S., et al. "Switched affine systems control design with application to DC-DC converters", IET Control Theory Appl., 4(7), pp. 1201-1210 (2010). DOI: 10.1049/ietcta. 2009.0246.
50. Trofino, A., Assmann, D., Scharlau, C.C., et al. "Switching rule design for switched dynamic systems with affine vector fields", IEEE Trans. Autom. Control, 54(9), pp. 2215-2222 (2009). DOI: 10.1109/TAC.2009.2026848.