A 24 GHz circularly polarized on-chip antenna for short-range communication application

Document Type : Article

Authors

1 Department of Electronics & Communication Engineering, NIT Durgapur, Durgapur-713209, West Bengal, India

2 Department of Space, Semi-Conductor Laboratory, Punjab, Pin-160071, India

Abstract

This article presents a design method of miniaturized, circularly polarized (CP), concentric ring-shaped monopole on-chip antenna for 24 GHz short-range application. The proposed antenna covers automotive radar spectrum 22-29 GHz with a resonance at 24 GHz. Taking a simple circular ring-shaped patch as reference antenna, a small gap is introduced in the closed-loop structure that helps to provide the required travelling wave current distribution for realizing the CP property. Then a smaller circular ring is incorporated inside the reference antenna to improve the antenna performance in terms of CP characteristics. Finally, the proposed antenna is tuned to obtain the CP characteristics in the desired band ranging from 23.2 GHz to 27 GHz with 3-dB axial ratio (AR) bandwidth of 3.8 GHz. It offers a maximum gain of -4.5 dBi and wide angular range coverage (HPBW>75° in both E and H-plane). The standard CMOS process with only one level of mask (metal patterning) is used to realize the designed antenna. Compact in size of 3.8 mm × 4 mm × 0.678 mm, simple design layout, and its performance make the antenna as a suitable candidate for system-on-chip (SoC) application.

Keywords


References:
1. Hung, C. and Weng, M. "Investigation of the silicon substrate with different substrate resistivities for integrated filters with excellent performance", IEEE Transactions on Electron Devices, 59(4), pp. 1164- 1171 (2012).
2. Pilard, R., Gianesello, F., Gloria, D., et al. "60 GHz HR SOI CMOS antenna for a system-on-chip integration scheme targeting high data-rate kiosk applications", IEEE International Symposium on Antennas and Propagation (APSURSI), Spokane, WA, pp. 895- 898 (2011).
3. Bao, X., Guo, Y., and Xiong, Y. "60-GHz AMCbased circularly polarized on-chip antenna using standard 0.18-m CMOS technology", IEEE Transactions on Antennas and Propagation, 60(5), pp. 2234-2241 (2012).
4. Babakhani, A., Guan, X., Komijani, A., et al. "A 77- GHz phased-array transceiver with on-chip antennas in silicon: Receiver and antennas", IEEE Journal of Solid-State Circuits, 41(12), pp. 2795-2806 (2006).
5. Singh, H., Mandal, S., Mandal, S.K., and Karmakar, A. "Design of miniaturised meandered loop on-chip antenna with enhanced gain using shorted partially shield layer for communication at 9.45 GHz", IET Microwaves, Antennas & Propagation, 13(7), pp. 1009- 1016 (2019).
6. Narde, R.S., Mansoor, N., Ganguly, A., et al. "Onchip antennas for inter-chip wireless interconnections: Challenges and opportunities", 12th European Conference on Antennas and Propagation (EuCAP), London, pp. 1-5 (2018).
7. Shamim, M.S., Mansoor, N., Narde, R.S., et al. "A wireless interconnection framework for seamless inter and intra-chip communication in multichip systems", IEEE Transactions on Computers, 66(3), pp. 389-402 (2017).
8. Masius, A.A. and Wong, Y.C. "On-chip miniaturized antenna in CMOS technology for biomedical implant", AEU-International Journal of Electronics and Communications, 115 (2019). https://doi.org/10.1016/j.aeue.2019.153025.
9. Singh, H., Mandal, S., and Mandal, S.K. "Siliconbased ferrite loaded miniaturized on-chip antenna for biomedical applications with improved gain & efficiency", European Microwave Conference in Central Europe (EuMCE), Prague, Czech Republic, pp. 179- 182 (2019).
10. Ray, A., De, A., and Bhattacharyya, T.K. "2.45 GHz energy harvesting on-chip rectenna in 0.18 m RF CMOS process", IEEE  Indian Conference on Antennas and Propogation (InCAP), Hyderabad, India, pp. 1-4 (2018).
11. Girma, M.G., Hasch, J., Sarkas, I., et al. "122 GHz radar sensor based on a monostatic SiGe-BiCMOS IC with an on-chip antenna", 7th European Microwave Integrated Circuit Conference., Amsterdam, pp. 357- 360 (2012).
12. Mandal, S., Singh, H., Mandal, S.K., et al. "Design of a  compact monopole on-chip antenna for 24 GHz automotive radar application", International Workshop on Antenna Technology (iWAT), Miami, FL, USA, pp. 115-117 (2019).
13. Wegman, F. and Aarts, L. "Advancing sustainable safety: National road safety outlook for 2005-202", SWOV Institute for Road Safety Research, Leidschendam, pp. 1-215 (2006). ISBN-10: 90-807958-7-9 ISBN- 13: 978-90-807958-7-7.
14. 'European Environment Agency'. Available at: http://europa.eu.int/comm/energy transport/library/ lb texte complet en.pdf, accessed 22 October (2003).
15. Technical requirements for vehicular radar systems. FCC, Washington, DC, FCC 47 CFR, Sec. 15.515, 2008.
16. Ju, Y., Jin, Y., and Lee, J. "Design and implementation of a 24 GHz FMCW radar system for automotive applications", International Radar Conference, Lille, pp. 1-4 (2014).
17. Kim, C., Kim, J., Baek, D., et al. "A circularly polarized balanced radar front-end with a single antenna for 24-GHz radar applications", IEEE Transactions on Microwave Theory and Techniques, 57(2), pp. 293-297 (2009).
18. Kuo, C., Lin, C., and Sun, J. "Modified microstrip franklin array antenna for automotive short-range radar application in blind spot information system", IEEE Antennas and Wireless Propagation Letters, 16, pp. 1731-1734 (2017).
19. Alsath, M.G.N., Lawrance, L., and Kanagasabai, M. "Bandwidth-enhanced grid array antenna for UWB automotive radar sensors", IEEE Trans. Antennas Propag., 63(11), pp. 5215-5219 (2015).
20. Gresham, I., Jenkins, A., Egri, R., et al. "Ultrawideband radar sensors for short-range vehicular applications", IEEE Trans. Microw. Theory Tech., 52(9), pp. 2105-2122 (2004).
21. Gresham, I., Kinayman, N., Jenkins, A., et al. "A fully integrated 24 GHz SiGe receiver chip in a low-cost QFN plastic package", Radio Freq. IEEE Radio Frequency Integrated Circuits (RFIC) Symposium., San Francisco, CA, p. 4 (2006).
22. Jain, V., Sundararaman, S., and Heydari, P. "A 22- 29-GHz UWB pulse-radar receiver front-end in 0.18- m CMOS", IEEE Transactions on Microwave Theory and Techniques, 57(8), pp. 1903-1914 (2009).
23. Krishnaswamy, H. and Hashemi, H. "A 4-channel 24- 27 GHz UWB phased array transmitter in 0.13 m CMOS for vehicular radar", Custom Integr. Circuits Conference., San Jose, CA, pp. 753-756 (2007).
24. Jain, V., Tzeng, F., Zhou, L., et al. "A single-chip dual-band 22-29-GHz/77-81-GHz BiCMOS transceiver for automotive radars", IEEE Journal of Solid-State Circuits, 44(12), pp. 3469-3485 (2009).
25. Yu, C., Li, E.S., Jin, H., et al. "24-GHz horizontallypolarized automotive antenna arrays with wide fan beam and high gain", IEEE Transactions on Antennas and Propagation, 67(2), pp. 892-904 (2019).
26. Suetsugu, S., Zhang, M., Hirokawa, J., et al. "Design of a 45-degree linearly-polarized slot array fed by a coaxial line in the millimeter-wave band", International Workshop on Electromagnetics: Applications and Student Innovation Competition (iWEM), Hsinchu, pp. 1- 2 (2015).
27. Hamberger, G.F., Siart, U., and Eibert, T.F. "A duallinearly polarized receive antenna array for digital beamforming in automotive use", IEEE Asia Pacific Microwave Conference (APMC), Kuala Lumpar, pp. 17-20 (2017).
28. Shamim, A., Roy, L., Fong, N., et al. "24 GHz on-chip antennas and balun on bulk Si for air transmission", IEEE Transactions on Antennas and Propagation, 56(2), pp. 303-311 (2008).
29. Lin, C-Y., Lin, Y-S., Lu, H-C., et al. "Design and implementation of A 24-/60-GHz dual-band monopole meander-line planar CMOS antenna", 54(7), pp. 1731- 1737 (2012).
30. Cheema, H.M. and Shamim, A. "The last barrier: onchip antennas", IEEE Microwave Magazine, 14(1), pp. 79-91 (2013).
31. WU, T.T. "Theory of thin circular loop antennas", Journal of Mathematical Physics, 3, pp. 1301-1304 (1962).
32. Rao, B.R. "Far field patterns of large circular loop antennas: Theoretical and experimental result", IEEE Trans. Antennas Propagation, 16(2), pp. 269-270 (1968).
33. Elliott, R.S., Antenna Theory and Design. Piscataway, NJ: IEEE Press, pp. 71-73 (2003).
34. Nakano, H., Tsuchiya, N., Suzuki, T., et al. "Loop and spiral line antennas at microstrip substrate surface", Proc. 6th Int. Conf. Antenna and Propagation (ICAP), Japan, pp. 196-200 (1989).
35. Altshuler, E.E. "The Traveling-wave linear antenna", IRE Trans. Antennas Propagation, 9(4), pp. 324-329 (1961).
36. Okuba, S. and Tokumaru, S. "Reactively loaded loop antennas with reflectors for circular polarization", Trans. IECE Jpn., 65(8), pp. 56-64 (1982).
37. Iizuka, K. "The circular loop antenna multiloaded with positive and negative resistors", IEEE Trans. Antennas Propag., 13(1), pp. 7-20 (1965).
38. Lo, Y.T., Solomon, D., and Richards, W.F. "Theory and experiment on microstrip antennas", IEEE Trans. Antennas Propagat., AP-27(2), pp. 137-145 (1979).
39. Milligan, T. "Polarization loss in a link budget when using measured circular-polarization gains of antennas", IEEE Antennas and Propagation Magazine, 38(1), pp. 56-58 (1996).
40. Roy, S.K. "Study of the gain of circularly or elliptically polarized antennae", Indian Journal of Pure and Applied Physics, 39(9), pp. 603-606 (2001). ISSN: 0975- 1041 (Online); 0019-5596 (Print).
41. Toh, B.Y., Cahill, R., and Fusco, V.F. "Understanding and measuring circular polarization", IEEE Transactions on Education, 46(3), pp. 313-318 (2003).
42. Jiang, L., Mao, J., and Leung, K.W. "A CMOS UWB on-chip antenna with a MIM capacitor loading AMC", IEEE Transactions on Electron Devices, 59(6), pp. 1757-1764 (2012).
43. Watanabe, S., Harun-ur Rashid A.B.M., and Kikkawa, T. "Effect of high-resistivity Si substrate on antenna transmission gain for on-chip wireless interconnects", Japanese Journal of Applied Physics, 43(45), pp. 2297-2301 (2004).
44. Shamim, A. and Zhang, H. "On-chip antenna: challenges and design considerations", Antennas and Propagation for 5G and Beyond, pp. 123-155 (2020).
Volume 30, Issue 4 - Serial Number 4
Transactions on Computer Science & Engineering and Electrical Engineering (D)
July and August 2023
Pages 1314-1329
  • Receive Date: 01 January 2021
  • Revise Date: 05 August 2021
  • Accept Date: 14 February 2022