References
[1] Govindan, K., Mina, H., and Alavi, B. ”A decision support system for demand management in healthcare supply chains
considering the epidemic outbreaks: A case study of coronavirus disease 2019 (covid-19)”. Transportation Research Part E:
Logistics and Transportation Review, 138:pp. 101967, (2020).
[2] Shahparvari, Sh., Abbasi, B., Chhetri, P., and Abareshi, A. ”Fleet routing and scheduling in bushfire emergency evacua-
tion: A regional case study of the Black Saturday bushfires in Australia”. Transportation Research Part D: Transport and
Environment, (2017).
[3] Aylin, W. ”The blazes in the Amazon are so big they can be seen from space. One map shows the alarming scale of the fires.”.
https://www.businessinsider.de/amazon-fires-satellite-images-map-of-rainforest-blazes-2019-8?
r=US&IR=T.
[4] Teague, B. et al. ”2009 victorian bushfires royal commission”. (2010).
[5] GFED. ”2019-20 australian bushfire season”. https://globalfiredata.org/pages/2020/01/03/
2019-20-australian-bushfires/.
[6] Kim, K. D., Hossain, Li., and Uddin, S. ”Situated response and learning of distributed bushfire coordinating teams”. Journal
of Homeland Security and Emergency Management, 10(1):pp. 95–111, (2013).
[7] Bodaghi, B., Shahparvari, S., Fadaki, M., Lau, K. H., Ekambaram, P., and Chhetri, P. ”Multi-resource scheduling and routing
for emergency recovery operations”. International Journal of Disaster Risk Reduction, 50:pp. 101780, (2020).
[8] Janice, k. B. and Scott, H. ”Yarnell hill fire serious accident investigation”. https://www.
wildfirelessons.net/HigherLogic/System/DownloadDocumentFile.ashx?DocumentFileKey=
4c98c51d-102c-4e04-86e0-b8370d2beb27&forceDialog=0.
[9] Minas, J. P., Hearne, J. W., and Handmer, J. W. ”A review of operations research methods applicable to wildfire management”.
International Journal of Wildland Fire, 21(3):pp. 189–196, (2012).
[10] Bodaghi, B. and Palaneeswaran, E. ”An optimization model for scheduling emergency operations with multiple teams”.
In Proceedings of the International Conference on Industrial Engineering and Operations Management, Detroit, Michigan,
(2016).
[11] Rodr ́ıguez-Veiga, J., G ́omez-Costa, I., Ginzo-Villamayor, M., Casas-M ́endez, B., and S ́aiz-D ́ıaz, Jos ́e L. ”Assignment prob-
lems in wildfire suppression: Models for optimization of aerial resource logistics”. Forest Science, 64(5):pp. 504–514,
(2018).
[12] Yang, Z., Guo, L., and Yang, Z. ”Emergency logistics for wildfire suppression based on forecasted disaster evolution. Annals
of Operations Research, pages pp. 1–21, (2017).
[13] Rodr ́ıguez-Veiga, J., Ginzo-Villamayor, M., and Casas-M ́endez B. ”An integer linear programming model to select and
temporally allocate resources for fighting forest fires”. Forests, 9(10):pp. 583, (2018).
[14] Wei, Y., Bevers, M., Belval, E., and Bird, B. ”A chance-constrained programming model to allocate wildfire initial attack
resources for a fire season”. Forest Science, 61(2):pp. 278–288, (2014).
[15] Wei, Y., Belval, E. J., Thompson, M. P., Calkin, D. E., and Stonesifer, C. S. ”A simulation and optimisation procedure
to model daily suppression resource transfers during a fire season in Colorado”. International Journal of Wildland Fire,
26(7):pp. 630–641, (2017).
[16] Lee, Y., Fried, J. S., Albers, H. J., and Haight, R. G. ”Deploying initial attack resources for wildfire suppression: spatial
coordination, budget constraints, and capacity constraints”. Canadian Journal of Forest Research, 43(1):pp. 56–65, (2012).
[17] Cerna, S., Guyeux, C., Royer, G., Chevallier C., and Plumerel, G. ”Predicting fire brigades operational breakdowns: A real
case study”. Mathematics, 8(8):pp. 1383, (2020).
[18] Galindres-Guancha, L., Toro-Ocampo, E., and Gallego-Rend ́on, R. ”A biobjective capacitated vehicle routing problem using
metaheuristic ils and decomposition”. International Journal of Industrial Engineering Computations, 12(3):pp. 293–304,
(2021).
[19] Mutar, M., Burhanuddin, M., Hameed, A., Yusof, N., and Mutashar, H. ”An efficient improvement of ant colony system
algorithm for handling capacity vehicle routing problem”. International Journal of Industrial Engineering Computations,
11(4):pp. 549–564, (2020).
[20] Ouaddi, K., Mhada, F., and Benadada, Y. ”Memetic algorithm for multi-tours dynamic vehicle routing problem with overtime
(mdvrpot)”. International Journal of Industrial Engineering Computations, 11(4):pp. 643–662, (2020).
[21] Londono, J., Rendon, R., and Ocampo, E. ”Iterated local search multi-objective methodology for the green vehicle rout-
ing problem considering workload equity with a private fleet and a common carrier”. International Journal of Industrial
Engineering Computations, 12(1):pp. 115–130, (2021).
[22] Suksee, S. and Sindhuchao, S. ”GRASP with alns for solving the location routing problem of infectious waste collection in
the northeast of thailand”. International Journal of Industrial Engineering Computations, 12(3):pp. 305–320, (2021).
[23] Shu, J. ”An efficient greedy heuristic for warehouse-retailer network design optimization”. Transportation Science, 44(2):pp.
183–192, (2010).
[24] Hojati, M. ”A greedy heuristic for shift minimization personnel task scheduling problem”. Computers & Operations Re-
search, 100:pp. 66–76, (2018).
[25] Mart ́ınez-Torres, H. L., P ́erez-Salicrup, D. R., Castillo, A., and Ram ́ırez, M. I. ”Fire management in a natural protected area:
what do key local actors say?”. Human ecology, 46(4):pp. 515–528, (2018).
[26] NAFC. ”Annual report 2017”. http://nafc.org.au/wp-content/uploads/2018/01/
NAFC-AR-2017-final-ebook.pdf.
[27] Chen, D., Batson, R. G., and Dang, Y. Applied integer programming: modeling and solution. (2011).
[28] Huai, C., Sun, G., Qu, R., Gao, Z., and Zhang, Z. ”Vehicle routing problem with multi-type vehicles in the cold chain
logistics system”. In 2019 16th International Conference on Service Systems and Service Management (ICSSSM), pages pp.
1–4. IEEE, (2019).
[29] Brucker, P. ”NP-Complete operations research problems and approximation algorithms”. Zeitschrift f ̈ur Operations-Research,
23(3):pp. 73–94, (1979).
[30] Ian, G. ”Replacement of essential water used during bushfire fighting operations policy”. https://www.ffm.vic.gov.
au/__data/assets/pdf_file/0019/21286/Essential-Water-Replacement-Policy-Nov-2016.pdf.
[31] Rauchecker, G. and Schryen, G. ”An exact branch-and-price algorithm for scheduling rescue units during disaster response”.
European Journal of Operational Research, 272(1):pp. 352–363, (2019).