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Abstract
Uncoordinated responses are problematic in various operations, especially in crucial circumstances such as bush-

fires, where they are associated with decreased efficiency, effectiveness, and safety. This paper presents a new
VRP (Vehicle Routing Problem) model for routing, scheduling, and coordinating bushfire-related resources including
Ground Resources (GR) and Aerial Resources (AR) in the suppression phase of a bushfire event. The coordination
must be in a way that ARs’ operations are allowed prior to GRs’ operations, otherwise, aerial interference is unhelpful.
The problem is NP-hard (Non-deterministic Polynomial-time) and cannot be solved in a Polynomial-time using exact
methods, but due to the crucial circumstances of bushfires, it should be solved in a reasonable time. Therefore, we
proposed a greedy heuristic algorithm to solve it. Dividing bushfires’ area into a set of fire sites, we solved instances
with different numbers of fire sites using both CPLEX and the greedy algorithm and compared the results. CPLEX
fails to solve the instances having more than three fire sites, but the greedy algorithm solves the largest instance having
9 fire sites in less than 1 minute. The ignorable Relative Percent Difference (RPD) of the greedy algorithm in the first
five instances indicates that our proposed algorithm is reliable.

Keywords: Coordination, Vehicle routing problem, Scheduling, Bushfire suppression, Greedy heuristic

algorithm

1. Introduction

Disasters have always affected humans’ life and the environment by stopping people from doing their

routine [1], and bushfires (wildfires) are one of them. Bushfires are uncontrollable fires occurring in weed,

forest, grassland, or plantation or nursery stock [2]. Each year, we witness bushfires’ effects on our assets

and natural resources. Recently, affected by global warming, an increasing number of bushfire incidents are

happening in many countries such as Brazil and Australia. In 2019, Brazil experienced more than 74,000

fires within the first eight months, while 2018’s total was about 40,000 [3]. Therefore, efficient plans in

order to mitigate severe bushfires’ impacts on all living creatures’ lives and our properties are vital.

The statistics show how many resources and lives have been destroyed during bushfire incidents. One

of the worst bushfires experienced by Victoria, Australia was in 2009 and was known as ‘ Black Saturday’,
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which resulted in many homes being destroyed, and 173 people losing their lives [4]. Moreover, in the 2019-

20 Australian bushfire season, three main areas, including New South Wales, Victoria, and Queensland,

were affected by bushfires. The number of these incidents were higher than or almost consistent with that

of previous years in these areas [5].

To tackle this very issue, it should be taken into account that, in situations like bushfire incidents where

several organizations are working together to achieve the same overarching goal, their operations should be

coordinated [6]. Bodaghi et al. [7] also stated that uncoordinated responses have always caused significant

problems, considering this, they coordinated Victorian emergency response teams in their research. A real

event caused by such a problem is the one mentioned by Brewer [8], which is based on a true story of a group

of American firefighters who lost their lives in the Yarnell Hill fire, Arizona. This event was reported due

to uncoordinated responses. Considering this coordination, when a fire incident occurs, Ground Resources

(GRs) must arrive after Aerial Resources (ARs) having finished their operations. In other words, ARs

are allowed prior to GRs’ operations otherwise, aerial interference is unhelpful, and it is highly likely to

interrupt GRs and deteriorate the conditions. However, if they are properly planed, they play a pivotal role

in extinguishing bushfire. Teague et al. [4] showed that ARs played an important role in suppressing fires

for the period January–February 2009, they declared that ARs had to finish their fire suppression operations

before the GRs arriving there. Despite the fact that climate limits made flying unsafe, and other policy

barriers delayed the ARs, they played a very important role in that incident.

These statistics indicate that suppressing fire is problematic worldwide. However, a vast majority of

the failures are controllable by planning and coordinating GRs and ARs to reach an optimal utilization. In

this study, we consider homogeneous GRs and heterogeneous ARs having different water carrying capacity.

Since bushfires burn freely and controlling them is difficult, they simply can be extended if they are not ex-

tinguished by a proper plan. Therefore, presenting an efficient algorithm that can solve large-size problems

in a reasonable time is necessary.

This paper focuses on proposing a mathematical formulation model for planning and coordinating the

available resources at a single depot for an efficient fire suppression, referred to as the Coordination in

Emergency Operation Response (CEOR). The problem seeks routing both GRs and ARs and assigning

them to the fire sites in an incident according to their demands. In other words, once an incident is detected,

the whole incident is divided into possible fire sites by Fire Management, which is not in the area of this

paper. Then, using our model, they can plan available resources in the right priority, which was mentioned
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in the previous paragraphs, in order to give services to the fire sites to control them as soon as possible. The

model gives an optimal plan for both ARs and GRs simultaneously. Moreover, since the problem refers to

a crucial situation we minimize suppression time as an objective function.

The main contributions of this paper are as follows:

a) To coordinate homogeneous GR and heterogeneous AR for responding to a bushfire event.
b) A new VRP-based mathematical coordination model for planning fire suppression operations in a

bushfire event.
c) To propose a greedy heuristic algorithm to solve this problem.

The remainder of this paper is arranged as follows:

– Section 2 reviews the related literature.
– Section 3 describes the problem and the presented model.
– Section 4 presents the mathematical formulation.
– Section 5 introduces the applied solution.
– Section 6 examines test cases.
– Sections 7 investigates the results.
– Section 8 & 9 describe managerial insights and conclusions.

2. Literature review

Most of the papers in the response phase of disasters tried to model their problems using the Operation

Research (OR) methods. OR is a significant method that has been used to model and solve disaster prob-

lems, for instance, earthquakes, floods, and hurricanes. There is also a substantive usage of OR methods to

solve bushfire problems in the literature review [9].

Bodaghi and Palaneeswaran [10] proposed a MILP project-scheduling-based model for scheduling and

assigning various teams of non-expendable resources to emergency operations. The emergency operations

require the synchronization of multiple teams. Although they applied their model to a hypothetically simu-

lated case study, they do not develop an algorithm to solve test cases. Rodrı́guez-Veiga et al. [11] used ARs

for bushfire suppression and then they proposed two MILP models for two tasks assigned to coordinator:

The allocation of ARs to flight routes and refueling points. In their study, aerial coordination provides flight

safety as well as the effectiveness of the mission. Their study gap is that they did not pay attention to GRs’

activities. Yang et al. [12] proposed an emergency logistics system for bushfire suppression with VRP

modeling. They considered a priority for servicing the fire sites by dedicated vehicles and then analyzed

two case studies at a bushfire in the Daxingan mountains. The necessity of the ARs is ignored in this model.

Rodrı́guez-Veiga et al. [13] proposed a MILP (Mix Integer Linear Programming) model that optimally
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selects resources (ARs, brigades, and engines) for extinguishing a fire in different time periods during the

planning period. They carried out a simulation study to obtain the optimal solution. Wei et al. [14] and

Wei et al. [15] focused on optimizing the daily responses to demands for fire suppression over a fire season

for efficient initial attacks. In the former paper, the authors used a chance-constrained two-stage stochastic

programming model to determine how many resources need to be hired and where they should be located.

They considered three types of resources including hand crews, fire engines, and water tenders in their

study. The latter paper optimizes the daily responses to demands for engine and crews by moving resources

between stations. In the model, they preferred to send an engine to fill a crew request instead of sending

no resources at all. In another related work, Lee et al. [16] developed a scenario-based standard-response

optimization model to deploy and then dispatch initial attack resources to fire sites in bushfires suppression.

Their model minimizes the number of fire sites that are not serviced by standard-response. They do not

take into account coordinated activities between resources, although they considered both GRs and ARs in

a firefighting operation. The above mentioned studies are summarized in Table 1.

Cerna et al. [17] also developed a methodology to calculate the fire brigades operational breakdowns

and predict disruptions with machine learning techniques. Their focus was on failurs due to human and

vehicular materials and applied it on a real fire department in France. In terms of methodologies used to

solve VRP models, which are in the NP-hard problem categories, we investigated following papers, all of

which have presented (meta)heuristic methods. Galindres-Guancha et al. [18] presented a multi-objective

capacitated VRP model considering drivers’ workload balance as well as cost of routs as two practical

objectives in the real world. To solve the model, they decomposed it into single sub-problems, which were

solved using Iterated Local Search method. They concluded that this method was a practical method for

multi-objective VRPs. Mutar et al. [19] proposed a single objective capacitated VRP model, which were

solved using the improvement of Ant Colony System, which offered a better solution in comparison with

some other methods. Ouaddi et al. [20] presented a multi-tours dynamic VRP with overtime considering

two objectives, and they solved it using an approach based on memetic algorithm. Their results showed

a better solution compared to the Ant Colony System implemented on the same problem in a previous

study. Londono et al. [21] implemented an iterated local search method in three stages on a green VRP

with three objective functions. Their methodology was quite novel in the related literature. Suksee et

al. [22] applied a Greedy Randomized Adaptive Large Neighborhood Search Procedure on a problem of

Location Selection and Vehicle Routing. They compared the result with the exact solution calculated by
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A Mathematical Programming Language (AMPL) program, which showed that in small-scale cases the

heuristic method could find the optimal solution within less process time, and it could find a better solution

in larger-scale cases. While AMPL could not find the optimal solution in larger-scale cases in a limited

process time, the heuristic method could find the better solution in a few seconds. The problem solved in

this paper has a similar scale and complexity to that of Suksee et al. [22]. As the heuristic method has

worked for their problem, for our model, we decided to employ a Greedy Heuristic Method, in which we

have used Local Search Method, too. The detailed methodology will be discussed in Section 5. Moreover,

Shu [23] and Hojati [24] overcame the challenge of solving NP-hard problems in large size instances using

a greedy heuristic algorithm. The former studied a warehouse-retailer network design model, and the latter

considered a Shift Minimization Personnel Task Scheduling Problem, which schedules ground crews of a

large airline in a large airport. They concluded that the greedy heuristic algorithm works well in comparison

with the current solution approaches, and its important advantage is being able to solve very large instances

fast.

Gaps and contribution

The literature indicated a lack of coordinated activities between GRs and ARs. We proposed a new VRP-

based mathematical coordination model for IMTs’ (Incident Management Team) response fire suppression

operations to a bushfire event. The innovations are mentioned clearly as follow:

– Considering coordinated activities between the GRs and ARs.
– Considering specific water sites for ARs to reload at.
– Proposing a new VRP-based mathematical model by taking into account these gaps.
– Solving test cases using a greedy heuristic algorithm.

3. Problem Statement

As mentioned in the introduction, a bushfire is an uncontrollable fire occurring in forests, and FM (Fire

Management) is a procedure that incorporates a range of intersessions to monitor, use, and reestablish fire-

prone forest ecosystems [25]. Fire suppression is one of these efforts that aim to extinguish or prevent the

spread of fire in forests. According to the reports of the previous real-world cases, FM uses two main types

of resources including ARs and GRs in order to control bushfires. As it is clear in the related literature, aerial

support in bushfire suppression plays a key role, and ARs’ attacks and GRs’ activities are complementary to

each other. National Aerial Firefighting Center (NAFC), in Australia, highlights that 18 million liters of fire
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suppressant and retardant by 23 aircraft in 2005 grew to more than 29,500 firebombing drops by 123 aircraft

in 2016 [26]. In Section 1, we showed that lack of coordination between ARs and GRs cause significant

problems. Considering this issue, in this paper, we propose a mathematical model, which schedules and

routes both ARs and GRs.

The pattern of our proposed model is illustrated in Figure 1. In this Figure, GRs are considered homo-

geneous and ARs are considered heterogeneous with their own water carrying capacity. Fire sites are shown

by F1, F2, and F3 as the important sites determined by the FM in the detection phase of a bushfire. Three

water sites are shown as L1, L2, and L3, on which ARs can load water. Water sites can be any reservoir

of natural or artificial water such as lakes, rivers, reservoirs behind the dam, artificial lake, etc, which are

considered to have infinite capacity. It should be noted that the ARs are capable of loading at both airports

and water reservoirs as shown in Figure 1. To fully suppress the fire sites, special demands of fire sites

should be satisfied. For instance, suppression of a fire site may need initial attack by ARs, followed by

GRs’ operations to prevent backfires. In the meantime, another fire site could well require GRs’ operations

without aerial suppresion. Since each AR is allowed to unload and reload for each fire site several times, it

may visit each arc several times. We consider each visit in different trips in the mathematical modeling.

4. Formulation

In this section, we present an effective network for the CEOR problem by considering coordination

between the resources. To formulate the mathematical model, the following characteristics are considered:

• The speed of each AR and GR is given, and then travel time is calculated.

• The water capacity of each AR is known.

• The fire sites’ demands for GRs, which are considered as process time, and their demands for ARs,

which are calculated by the volume of water that is needed according to their areas, are known.

• Loading time of ARs at loading sites including water sites and airports is known.

• The service time spent on fire sites by ARs is considered in their travel time from one site to another

one, but, for GRs, it is a decision variable, which is determined in the model according to the total

demand of a fire site for GRs, which is a known parameter.

• The water capacity of loading sites is considered infinite.

• Each fire site can be served by one type or more types of coordinated resources.

• We use r to show different trips of ARs, and all ARs start their trip from a single depot, which is an
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airport.

4.1. Notations and sets

The sets and indexes used to formulate the problem mathematically are described as follows:

N Set of all sites i, j ∈ {A ∪ E ∪L ∪F ∪ ˆA ∪ Ê };

A , ˆA Single starting depot and hypothetical ending depot for ARs, respectively;

E ,Ê Single starting depot and hypothetical ending depot for GRs, respectively;

L Set of all water sites, that l ∈ {1, 2, . . . ,L };

F Set of all fire sites, that f ∈ {1, 2, . . . ,F };

Q Set of all GRs and ARs, that q, q
′

∈ {V ∪D};

D Set of all ARs, that d ∈ {1, 2, . . . ,D};

V Set of all GRs, that v ∈ {1, 2, . . . ,V };

R Set of all trips of ARs, that r ∈ {1, 2, . . . ,R};

4.2. Parameters

Parameters and the values that are calculated are as follows:

capd Capacity of ARs, that d ∈ D (Liter);

dsi Total demand of fire site i ∈ F for GRs (Hour);

hq Start time of q ∈ Q to be dispatched from its depot;

ltd Loading time of ARs, that d ∈ D ;

s f j The area of fire sites, that j ∈ F ;

vqq Speed of resources, that q ∈ Q;

vw The volume of water required for firebombing one unit of fire sites’ area (Liter);

disti j Distance from i ∈ N to j ∈ N ;
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tq
i j Travel time of resource q ∈ Q from i ∈ N to j ∈ N , that tq

i j=disti j / vqq;

M Big positive number;

4.3. Decision variables

The following decision variables are defined to discover the configuration of the emergency response in

bushfires:

Abv
i Service time spent on fire site i ∈ F by GR v ∈ V ;

Wrd
j Arrival time of AR d ∈ D at fire site j ∈ F in trip r ∈ R after loading from loading site;

W′vj Arrival time of GR v ∈ V at fire site j ∈ F after AR leaving there there;

Urd
i Arrival time of AR d ∈ D at loading sites i ∈ {A ∪L } in trip r ∈ R;

Xrd
i j 1 if AR d ∈ D travels from i ∈ N to j ∈ N in trip r ∈ R, and 0 otherwise;

X′vi j 1 if GR v ∈ V travels from i ∈ N to j ∈ N , and 0 otherwise;

Yd 1 if AR d ∈ D is used for firebombing, and 0 otherwise;

Y ′v 1 if GR v ∈ V is used for supporting operations, and 0 otherwise;

4.4. Mathematical formulation

We present the following mathematical model for the CEOR problem mentioned in this paper. For a

better illustration, the constraints are classified in two classes named AR routing and GR routing, which

route and schedule the related resources. Then, at the end of the model, the coordination constraint is

presented.

Objective function:

Min Z =
∑
r∈R

∑
d∈D

∑
j∈F

Wrd
j +
∑
v∈V

∑
j∈F

W′vj (1)

s.t

AR routing:∑
j∈F

Xrd
i j =

∑
j∈{F∪A },i, j

Xr−1d
ji ∀r > 1, d ∈ D , i ∈ {A ∪L } (2)
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∑
i∈{A ∪ ˆA ∪L }

Xrd
ji =

∑
i∈{A ∪L }

Xr−1d
i j ∀r > 1, d ∈ D , j ∈ F (3)

∑
r∈R

∑
d∈D

∑
i∈{L∪A }

capd.Xrd
i j ≥ s f j.vw ∀ j ∈ F (4)

∑
r>1

∑
i∈A

∑
j∈{L∪A ∪ ˆA }

Xrd
i j ≤ 0 ∀d ∈ D (5)

∑
r∈R

∑
i∈F

∑
j∈ ˆA

Xrd
i j ≤ 1 ∀d ∈ D (6)

∑
i∈{A ∪L }

∑
j∈F

Xrd
i j ≤ Yd ∀r ∈ R, d ∈ D (7)

∑
i∈A

∑
j∈F

X1d
i j = Yd ∀d ∈ D (8)

hd + ltd + td
ji ≤ W1d

i + M.
(
1 − X1d

ji

)
∀d ∈ D , j ∈ A , i ∈ F (9)

Ur−1d
i + ltd + td

i j ≤ Wrd
j + M.

(
1 − Xrd

i j

)
∀r > 1, d ∈ D , i ∈ {A ∪L }, j ∈ F (10)

Wr−1d
j + td

ji ≤ Urd
i + M.

(
1 − Xrd

ji

)
∀r > 1, d ∈ D , i ∈ {A ∪L }, j ∈ F (11)

GR routing:∑
i∈{Ê∪F },i, j

X′vji =
∑

i∈{F∪E },i, j

X′vi j ∀v ∈ V , j ∈ F (12)

∑
v∈V

∑
j∈{E∪F },i, j

X′vji .Abv
i ≥ dsi ∀i ∈ F (13)

∑
j∈F

X′vi j ≤ 1 ∀v ∈ V , i ∈ E (14)

∑
i∈F

X′vi j ≤ 1 ∀v ∈ V , j ∈ Ê (15)

∑
i∈E

∑
j∈F

X′vi j = Y ′v ∀v ∈ V (16)

hv + tv
i j ≤ W′vj + M.

(
1 − X′vi j

)
∀v ∈ V , i ∈ E , j ∈ F (17)

W′vj + Abv
j + tv

ji ≤ W′vi + M.
(
1 − X′vji

)
∀v ∈ V , i ∈ F , j ∈ F , i , j (18)

AR and GR coordination constraint:

M
(
1 − X′vi j

)
+W′vj ≥ Wrd

j ∀r ∈ R, v ∈ V , d ∈ D , i ∈ {E ∪F }, j ∈ F , i , j (19)

Variables:

Xrd
i j , X′vi j , Yd, Y ′v ∈ {0, 1} ∀r ∈ R, d ∈ D , v ∈ V , i, j ∈ N (20)
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Wrd
j , Urd

i , W′vj , Abv
j ∈ ℜ

+ ∀r ∈ R, d ∈ D , v ∈ V , j ∈ F , i ∈ {L ∪A } (21)

The objective function (1) minimizes suppression total time. Constraints (2)−(11) are related to AR routing.

Constraints (2) and (3) maintain ARs flow balance at loading sites and fire sites, respectively. Constraint

(4) is ARs’ assignment constraint. Constraints (5) and (6) indicate that each AR can leave its depot utmost

once in its trip and then if it leaves, it must enter the hypothetical depot only once. Constraint (7) states if

an AR is dispatched, binary variable Yd = 1 (i.e. resource d is used). Constraint (8) ensures that an AR

starts its trip at depot, if it is used. Constraints (9)−(11) maintain time between sites i and j, if xrd
i j = 1.

In addition, these equations and td
i j ≥ 0 eliminate any sub-tours in AR routing. Constraints (12)−(18) are

related to GR routing. All these constraints are equivalent to similar constraints in the AR routing except

constraint (13), which is fire sites’ demands for GRs’ operations. Finally, constraint (19) coordinates GRs

with ARs. Constraints (20) and (21) define the decision variables of the problem.

4.5. Linearizing non-linear constraints

To linearize the presented model, the non-linear constraints are replaced by their equivalent linear ones.

Base on the method offered by Chen et al. [27], constraints (22)−(25) are presented instead of non-linear

constraint (13) using an auxiliary variable, Abbv
i , and

∑
j∈{E∪F },i, j X′vji .Abv

i = Abbv
i ,∀v ∈ V , i ∈ F .

∑
v∈V

Abbv
i ≥ dsi ∀i ∈ F (22)

Abbv
i ≤ M.

∑
j∈{E∪F },i, j

X′vji ∀v ∈ V , i ∈ F (23)

Abv
i − Abbv

i ≤ M.

1 − ∑
j∈{E∪F },i, j

X′vji

 ∀v ∈ V , i ∈ F (24)

Abv
i − Abbv

i ≥ 0 ∀v ∈ V , i ∈ F (25)

5. Solution approach

We generated an optimization model for the CEOR problem in Section 4. This section represents the

applied approach to solve the proposed model. We know that VRP models such as ours are in NP-hard class

problems. Therefore, in our model, as the number of resources and fire sites increase, exact algorithms can

not solve it in polynomial time [28]. These problems should be solved with heuristics or approximation

algorithms [29]. Moreover, the problem is in the crisis area, and it should be solved in a reasonable time.
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According to the related literature, in the previous sections, we showed that Greedy methods are practical for

problems which have a similar complexity and scale to ours. Therefore, We decided to designed an efficient

Greedy heuristic algorithm in the Section 5 to solve our problem. Algorithm 1 illustrates the procedure of

our greedy algorithm.

5.1. Greedy heuristic algorithm

First of all, we need to sort the fire sites to satisfy their demands for ARs. As shown in Algorithm

1,in the first f or loop, different sorts of fire sites are considered based on s f f .vw and ds f in the first iter,

and randomly in others. This is because, in the first iter, we try to satisfy the demands in a greedy way,

in which the fire sites with lower demand for ARs and higher demands for GRs should be serviced earlier

than others in order to reach the minimum total suppression time. However, in the remained iterations, we

check randomly sorted fire sites to make sure that there is not a better solution.In the second f or loop, the

sorted fire sites demands for ARs are satisfied. In the third f or loop, with the same pattern of sorting, the

fire sites’ demands for GRs are satisfied. This way of sorting, force the algorithm to minimize the arrival

time (objective function) of each resource at each fire site greedily. This description and the pseudo-code

show how the mentioned coordination between ARs and GRs in the mathematical model is considered in

our greedy algorithm as well.

In the first while loop, at first, based on a local search method, we greedily choose which AR should be

selected and which loading site is better to load at (if the fire site needs ARs). Then, in this loop, we update

the value of the objective function (time) of ARs after each service. This loop is very decisive because it

considerably reduces the complexity of the model by eliminating the main cause of its complexity, which

is the index r, and automatically indicates the index by its iterations. In the second while loop, at first, we

choose which GR should be selected (if the fire site needs GRs). Then we calculate the value of the objective

function (time) of GRs. At the end of the first f or loop which sorts fire sites in different iterations, the

objective functions of iters are reported. Finally, the best iteration, whose objective function is minimum,

is reported as the best iter.
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Algorithm 1 Greedy heuristic algorithm
Begin

listq ← {∅}; Initialize the current path list of all AR d ∈ D and GR v ∈ V
arrq ← 0; Initialize the current arrival time of all AR d ∈ D and GR v ∈ V
ŵ; Index for all depots and water reservoirs that each AR reload at; ŵ ∈ {L ∪ A}
time ; The arrival time summation of all resource to fire sites
for iter ∈ T do

time = 0
In first iteration sort all f based on s f f .vw and ds f and in remained iterations sort them randomly
for all sorted f do

f ′ ← current fire site
while s f f ′ .vw > 0 do

i← current position for q′
ŵ′ ← depot or water reservoirs that cause to minimize route iŵ′f’
arrq′ = Minq∈D[arrq + (tq′

iŵ′ + tq′

ŵ′ f ′)]

Xrq′

iŵ′ = 1 and listq′ ← ŵ′

Xrq′

ŵ′ f ′ = 1 and listq′ ← f ′

Update arrq′← arrq′ + (tq′

iŵ′ + tq′

ŵ′ f ′) and update time←time+arrq′

end
end
In first iteration sort all f based on time that final AR has already left f and in remained iterations
sort them randomly
for all sorted f do

f ′′ ← current fire site
while ds f ′′ > 0 do

i← current position for q′
arrq′′ =Minq∈Varrq

X′q
′′

i f ′′ = 1, listq′′ ← f ′′

Update arrq′′← arrq′′ + Abq′′

i + tq′′

i f ′′ and update time←time+arrq′′

end
end

end
best time =Min time
report iter that provides the best time and report listq and arrq

6. Test cases

This section assesses the computational performance of the greedy heuristic algorithm that is imple-

mented on the platform of Python 2019.3. We solved each optimization problem using GAMS, CPLEX

12.8 with a 5000 seconds time limit, and the best feasible solution is reported. We conducted the results on

a desktop computer equipped with Intel(R) Core(TM) i5 CPU @ 4.00 GHz and 16 GB of RAM.

We randomly generated the test cases to evaluate our proposed greedy algorithm and show how execu-
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tion time is affected by different sizes of the test cases. We reported CPU time (”CPU.t”), objective value

(”Obj”), and relative percent difference (”RPD”) in Table 2. We also illustrate the test cases’ size by the

total number of ARs plus GRs (”AG (Aerial and Ground resources)”), reloading sites (”Ŵ”), and fire sites

(”F”). RPD is calculated as below:

RPD(%) =
Ob j − minOb j

minOb j
(26)

For example, in the first test case and the column of CPLEX, Ob j is the optimal solution obtained by

CPLEX, and minOb j is the minimum value between obj of CPLEX and Obj of the greedy heuristic algo-

rithm.

For better analyses, we considered specific features for the generated test cases. The number of re-

sources varies between 2 and 16. We used an AR and a GR in the first test case, but others are different.

The ARs are heterogeneous, and we considered three ARs with specific capacities (680, 1200, 15142 liters)

in the test cases. Inspired by Rodrı́guez-Veiga et al. [11], we used the same number for each of them in

different test cases. The number of fire sites and water sites, inspired by Rodrı́guez-Veiga et al. [11], varies

between 2 and 9, and between 2 and 6, respectively. We calculated the volume of water needed for each

fire site using Gill [30], which showed that 12 megalitres water were used for Mt Lubra bushfire case in the

Grampians, where 120,000 hectares burnt in January 2006 (i.e. 0.001 litre water was dropped on per square

meter surface). Each fire site’s demand for GRs’ services is generated randomly between 0 and 1 hour. We

allow the fire sites’ demand for GRs or/and ARs to be zero due to the specific demand for each fire site

mentioned in Section 3. The distance in the network is generated randomly between 0 and 15 km. The rest

of the parameters are in Table 3.

In Table 3, we show how each element affects the test cases’ size and how efficiently our proposed

algorithm works. In the mathematical model, one of the effective factors is r index, which indicates ARs’

trips and is affected by the amount of fire sites’ demands for ARs. The whole number of trips is calculated

as below:

r =
∑
f∈F

⌈
s f f .vw

mind∈D (capd)

⌉
× 2 + 1 (27)

In Equation (27),based on an AR having the lowest capacity, the number of times that it must unload to fully

satisfy each fire site’s demand is calculated. Then, this value is doubled due to the fact that it has to unload
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and reload in two different trips for its each service. Finally, one number is added to the total value because

of the index r−1 in the mathematical model. As shown in Table 3, another effective factor on the test cases’

size is the number of fire sites, ”F”. In addition to its effect on the mathematical model as an index ( f ), it

causes the r index to be larger. The number of r increases extremely as the number of fire sites increase

even if the fire sites have the least amount of demands because ARs must reload for each fire site at least

once, which needs at least two trips of ARs. In other words, for each fire site, it must unload and reload and

use two trips. Since r is an index in the mathematical model, it has a serious effect on the test cases’ size.

For instance, in test cases 3 and 4 in Table 3, as the number of fire sites (”F”) increases from 2 to 3, the

CPU time for the CPLEX processor becomes almost 80 times higher, while other elements stay the same

or even decrease. However, changing the number of water sites (”Ŵ”) is not as effective as the number of

fire sites (”F”) on the size of the test cases (see test cases 2 and 3 in Table 3). The CPLEX can find optimal

solution of the test cases 1-5, but it can not solve the rest of them in the 5000 seconds time limitation. Our

proposed greedy heuristic algorithm can solve them in less than one minute for the worst case. For a better

illustrate, in Figure 2, We drew the 1-5 test cases on the left axis and the 6-10 test cases on the right axis.

Considering the test cases solved optimally by CPLEX, our proposed algorithm can solve the first three of

them optimally and the rest of them with ignorable RPD. It indicates that our proposed algorithm is reliable.

In the previous explanations, it turned out that a small increase in the number of fire sites (”F”) causes

a big jump in the computational time of the test cases solved by CPLEX. In this paragraph, we illustrate

how the computational time of the test cases solved by the greedy heuristic algorithm is affected. As the

test cases’ size increase, the computational time of them solved by the greedy heuristic algorithm grows

extremely (see Figure 2). Table 3 shows all the significant changes in the computational times of the test

cases when solved by the greedy heuristic algorithm are due to the rise in the number of both ARs and GRs

(”AG”) and fire sites (”F”). For instance, in test cases 5 and 6, or 8 and 9, the CPU.t increases significantly

when three number is added to the number of the fire sites (”F”), despite the fact that other features stay

the same. (To see the effects of ”AG”, see test cases 7 and 8.) Therefore, a small increase in the number

of fire sites and the number of resources affects the complexity of the problem considerably. However, the

proposed algorithm can solve the test cases in a reasonable time.
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7. Results and discussion

In this section, we discuss the parameters of GRs and ARs that affect the objective function in order to

determine the ideal features for them. As it is mentioned above, ARs are heterogeneous, and we use three

types of them, in the test cases, including large-sized, (Coulson B737 air tanker – “Bomber”), medium-sized

(Bell 204B – “Helitak”), and small-sized (Eurocopter AS355F1 Twin Squirrel – “Firebird”) aircraft with 1

to 4 units available. For GRs, we use homogeneous vehicles, V, with 1 to 4 units being available. Table 2

shows more details about the resources.

7.1. Sensitivity analysis

According to the mathematical model, the value of the objective function drops down if the fire sites

are extinguished in less time. The features of the resources influencing this are their speed, capacity, and

loading time. Here, we considered a test case with nine fire sites, three water sites, and four available

resources (one GR and 3 ARs of each type). Investigating ARs’ features, in tables 4, 5 and 6, we show the

impacts of some changes in their loading time, capacity, and speed, respectively, on the objective function

value in the considered test case. As the objective function value is the summation of all arrival times and

does not show the total ”operation time”, we mentioned it in all tables as well. In Table 4, the trend of the

ob j shows that, for all ARs, the smaller their loading times are, the better the objective function value is.

The best value for the ob j is resulted in the last row, where the loading times have the minimum values. In

Table 5, the trend of ob j shows that the higher the capacity of both small and medium ARs are, the better

the objective function value is. However, for the large AR, any rise in its capacity has no impact on the ob j.

This is because, in this test case, the total demand of all fire sites are less than the capacity of large ARs,

and increasing it does not help to extinguish the bushfire sooner. The best value for the ob j is resulted in

the last row, where the effective capacities are higher. In Table 6, the trend of ob j shows that the higher

the speed of all ARs are, the better the objective function value is. The best value for the obj is resulted

in the fourth row, where the speed of meduim-sized AR is more than doubled, and that of both small and

large-sized ones stayed unchanged. All Tables 4, 5, and 6 show that the ”operation time” is not affected as

much as the ”ob j”. This is due to the coordination between ARs and GRs, in which GRs operate as the final

supportive resources on fire sites, and the ”operation time” more depends on their arrival time than that of

ARs. We will discuss it more in the following paragraphs.

Here we show how the ”operation time” is affected. In Table 7, the influences of changes in the GRs’

speed are shown, and compared to Table 6, here, more betterment (decline) can be seen in ”operation time”.
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Moreover, according to table 8, the main effective parameter on ”operation time” is the number of resources.

One may expect a decline in ”operation time” when increasing the number of resources. However, in

this case, our results show that it behaves differently in various situations. For example, affected by the

coordination constraint, adding to the number of ARs without any change in the number of GRs has only

a little impact on ”operation time”. However, adding only one number to GRs haves the ”operation time”.

After this, an addition to the number of ARs are more effective on ”operation time”.

8. Managerial insights

Managers always look for the best decision, especially in crisis circumstances, where they have to make

serious decisions under a time pressure. We presented an optimisation tool that helps them in these sit-

uations. Although the proposed tool is presented in bushfire situations, they are useable in other relief

operations such as earth quick, flood, etc. According to the historical data, when a bushfire occurs, sup-

pressing it in a minimum time is very important. Moreover, the proper usage of available resources over the

time limitation has a pervasive influence on preventing the fire from expanding and burning more areas and

properties. Our tool prepares these possibilities. According to the results in Section 7, managers are advised

to adapt the tool for specific bushfires’ situations to take the advantage of the tool in order to control them

successfully. For this purpose, there are some relevant management tips here about both available resources

and the areas of bushfires.

It turned out that ”operation time” does not decline by increasing the number of ARs without any change

in the number of GRs. Apparently, it seems that due to the sufficient number of ARs to do their task on

time, the GRs do not need to wait to do their supportive operations on fire sites, which could reduce total

”operation time”. However, as fire site’s demands for GRs is as an effective factor, it should be noted that

GRs may not need to wait, but there should be a sufficient number of them to satisfy the demands in less

time, otherwise, they have to service fire sites in sequence, which takes a great deal of time, especially in

large-scale bushfires. Thus, in such situations, increasing the number of ARs only increase the suppression

cost, and managers should choose a proper number of both ARs and GRs. Moreover, when the duration

time between ARs’ operations and GRs’ supportive operations on fire sites increase, the efficiency of their

coordination decrease because the longer it is, the more possible the bushfire is to accelerate again and

expand. We have two pieces of advice for this problem. Firstly, it is a good idea to divide a bushfire area

into more fire sites because it makes each fire site has lower demand for GRs, which can reduce GRs’
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service time on the fire sites and cause the fire sites to be serviced sooner. Secondly, increasing the number

of GRs according to the fire sites’ demands for GRs is another practical approach. Furthermore, about ARs,

according to Section 7, managers should employ ARs with higher capacity, higher speed, and lower loading

time.

9. Conclusion

We have witnessed the destruction of natural resources and humans’ funds and lives due to fires such as

recent bushfires burning in the forests of Amazon and Australia. In practice, To prevent the spread of such

bushfires, the managers need to decide about the optimal assignment and routing of ARs and supportive GRs

quickly. They also have to coordinate these resources in a proper way, which is described in the previous

sections, to enhance the effectiveness of fire suppression operations. Considering these issues, in this paper,

we proposed a new VRP-based optimization model for this problem. We know that VRPs are NP-hard

problems, and decision-makers need a tool that can solve them in a limited time. Our results show that

the CPLEX solver is unable to solve this model in real-world scales. Therefore, we proposed an efficient

greedy heuristic algorithm to solve it. To validate the reliability of the greedy algorithm, in the test cases

that CPLEX can solve, we compared the optimum solutions with the solutions obtained from our algorithm.

The results illustrate that the greedy algorithm also can achieve the optimal solutions of those test cases that

CPLEX can solve.

In practice, the proposed model is useable for general relief operations such as coordination between

road cleaning resources and supplier resources in events such as floods, earthquakes, and hurricanes. There-

fore, the proposed greedy algorithm is also useable for solving the mentioned problems. Moreover, we know

that minimizing the time of operation, which is considered as the objective function in our model, leads to

saving more properties and lives, which is a considerable objective in all crisis circumstances. An important

feature that makes our model a realistic one is coordinating GRs and ARs.

Future work can focus on other useful solution approaches including metaheuristic algorithms such as

genetic and ant-colony to solve the mathematical model and compare the results. Moreover, the mathe-

matical model can be developed to make it closer to the real-life cases. For example, considering multiple

depots, where the routes of resources can start and end, is a good idea. To further extend the mathematical

model, the uncertainty of climate conditions can be taken into account. Considering time windows and

blocked roads are also good points to make the model more realistic.
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Figures Captions:

Figure 1. Scheme for Coordination in Emergency Operation Response (CEOR).

Figure 2. Computational time of the test cases solved by greedy heuristic algorithm (both vertical axes

show CPU.t(s). the one on the left-hand side shows CPU.t of test cases 1-5, and the one on the right-hand

side shows that of test cases 6-10.

Figure 1: Scheme for Coordination in Emergency Operation Response (CEOR).

Figure 2: Computational time of the test cases solved by greedy heuristic algorithm (both vertical axes show CPU.t(s). the one on
the left-hand side shows CPU.t of test cases 1-5, and the one on the right-hand side shows that of test cases 6-10.
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Tables Captions:

Table 1. Summary of optimization models for fire management in response phase (VRP-Vehicle Routing

Problem, MILP-Mix Integer Linear Programming, MAX-Maximize, MIN-Minimize, PS-Project Schedul-

ing, S-Scheduling, As-Assignment, ARs-Aerial Resources, GRs-Ground Resources).

Table 2. Features of the resources (Km-Kilometre, ARs-Aerial Resources, GRs-Ground Resources).

Table 3. A summarized results of the test cases.

Table 4. Impact of loading time of ARs (shown by D) on the objective function value..

Table 5. Impact of capacity of ARs (shown by D) on the objective function value.

Table 6. Impact of speed of ARs (shown by D) on the objective function function value(Km-Kilometre).

Table 7. Impact of speed of GRs (shown by V) on the objective function value when that of ARs (shown

by D) are fixed (Km-Kilometre).

Table 8. Impact of number of GRs (shown by V) and ARs (shown by D) on the objective function value

while all of them have the best features in the previous tables.

Table 1: Summary of optimization models for fire management in response phase (VRP-Vehicle Routing Problem, MILP-Mix In-
teger Linear Programming, MAX-Maximize, MIN-Minimize, PS-Project Scheduling, S-Scheduling, As-Assignment, ARs-Aerial
Resources, GRs-Ground Resources).

Study Study type Model type Objective(s) Resource type
Lee et al. [16] Bushfire suppression As MILP MIN loss Engines, dozer, hand crews, and heli-

copters
Wei et al. [14] Bushfire suppression As MILP MIN cost Hand crews, fire engines, and water ten-

ders
Bodaghi and pala-
Palanesswaran [10]

Emergency operations PS MILP MIN time Multiple teams of non-expendable re-
sources

Yang et al. [12] Bushfire suppression VRP MILP MIN time, cost Emergency vehicles
Wei et al. [15] Bushfire suppression As MILP MIN cost Engines, crews
Rodrı́guez-Veiga et
al. [13]

Forest fires suppression As MILP MIN cost ARs, brigades, and engines

Rodrı́guez-Veiga et
al. [11]

Bushfire suppression As MILP MIN time ARs

Rauchecker and
Schryen, [31]

Disaster response S MILP MIN time Rescue units

Our study Bushfire suppression VRP MILP MIN time GRs and ARs

Table 2: Features of the resources (Km-Kilometre, ARs-Aerial Resources, GRs-Ground Resources).

Resource Capacity (litr) Speed
(km/hour)

Loading time (minutes)

D (large ARs) 15142 850 20
D (medium ARs) 1290 185 5
D (small ARs) 680 230 2
V (GRs) − − − 60 − − −
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Table 3: A summarized results of the test cases.

Test Size CPLEX Greedy algorithm
AG× Ŵ ×F Obj CPU.t (s) RPD(%) Obj CPU.t (s) RPD(%)

1 2× 2× 2 2.03 40 00.00% 2.03 0.002 00.00%
2 4× 2× 2 1.07 8 00.00% 1.07 0.002 00.00%
3 4× 4× 2 1.42 2 00.00% 1.42 0.002 00.00%
4 4× 3× 3 3.08 157 00.00% 3.15 0.005 02.27%
5 8× 3× 3 0.99 5000 00.00% 1.00 0.008 01.01%
6 8× 3× 6 − − − 14.52 0.06 −

7 8× 6× 6 − − − 13.90 0.06 −

8 12× 6× 6 − − − 6.22 0.26 −

9 12× 6× 9 − − − 23.6 2.9 −

10 16× 6× 9 − − − 18.21 22.30 −

Table 4: Impact of loading time of ARs (shown by D) on the objective function value.

Loading time (min) Objective function value
D(small) D(medium) D(large) obj operation time (hour)
3 7 30 140.6 6
2 5 20 115.6 5.9
1 5 20 105.9 5.69
2 2.5 20 102.3 5.37
2 5 10 70.3 6.3
2 2 2 59.7 5.8

Table 5: Impact of capacity of ARs (shown by D) on the objective function value.

Capacity (liter) Objective function value
D (small) D (medium) D (large) obj operation time (hour)
680 1290 15142 115.6 5.9
1300 1290 15142 91 5.49
680 2600 15142 92.5 6.55
680 4000 15142 89 6
680 1290 30000 115.6 5.9
15142 15142 15142 52.7 5.8

Table 6: Impact of speed of ARs (shown by D) on the objective function function value(Km-Kilometre).

Speed (km/hour) Objective function value
D (small) D (medium) D (large) obj operation time (hour)
100 80 500 117.5 6.8
230 185 850 115.6 5.49
500 185 850 105 5.4
230 400 850 102.4 5.2
230 185 1600 113.4 5.9
850 850 850 105.6 6.2
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Table 7: Impact of speed of GRs (shown by V) on the objective function value when that of ARs (shown by D) are fixed (Km-
Kilometre).

Speed (km/hour) Objective function value
V D (small) D (medium) D (large) obj operation time (hour)
30 850 850 850 117 7.8
60 850 850 850 115.6 5.49
80 850 850 850 101.2 4.97
100 850 850 850 97.3 4.69
200 850 850 850 95 4.37

Table 8: Impact of number of GRs (shown by V) and ARs (shown by D) on the objective function value while all of them have the
best features in the previous tables.

Number Objective function value
V D (small) D (medium) D (large) obj operation time (hour)
1 1 1 1 37 4.9
1 2 2 2 36.8 4.37
2 1 1 1 18.7 2.49
3 1 1 1 7.6 1.7
3 2 2 2 6.5 1.4
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