References:
1.Allahverdi, A., Ng, C.T., Cheng, T.C.E., et al. “A survey of scheduling problems with setup times orcosts”, European Journal of Operational Research,187(3), pp. 985–1032 (2008).https://doi.org/10.1016/j.ejor.2006.06.060.
2.Almada-Lobo, B., Klabjan, D., Carravilla, M.A., etal. “Single machine multi-product capacitated lotsizing with sequence-dependent setups”International Journal of Production Research,45(20), pp. 4873-4894 (2007). https://doi.org/10.1080/00207540601094465.
3.Jin, F., Dong, S., and Wu, C. “A simulatedannealing algorithm for single machine schedulingproblems with family setups’’, Computers andOperations Research, 36(7), pp. 2133-2138 (2009).https://doi.org/10.1016/j.cor.2008.08.001.
4.Poursabzi, O., Mohammadi, M., and Naderi, B. “An improved model and a heuristic for capacitated lotsizing and scheduling in job shop problems”,Scientia Iranica, 25(6), pp. 3667-3684 (2018).https://doi.org/10.24200/sci.2017.20016.
5.Sahling, F., Buschkühl, L., Tempelmeier, H., et al.“Solving a multi-level capacitated lot sizingproblem with multi-period setup carry-over via afix-and-optimize heuristic”, Computers andOperations Research, 36(9), pp. 2546–2553 (2009). https://doi.org/10.1016/j.cor.2008.10.009.
6.Carvalho, D.M. and Nascimento, M.C.V. “A kernelsearch to the multi-plant capacitated lot sizingproblem with setup carry-over”, Computers &Operations Research, 100, pp. 43-53 (2018).https://doi.org/10.1016/j.cor.2018.07.008.
7.Florian, M., Lenstra, J.K., and Rinnooy Kan,A.H.G. “Deterministic production planningalgorithms and complexity”, Management Science,26(7), pp. 669-679 (1980). https://doi.org/10.1287/mnsc.26.7.669.
8.Bitran, G.R. and Yanasse, H.H. “Computationalcomplexity of the capacitated lot size problem”,Management Science, 28(10), pp. 1174-1186(1982). https://doi.org/10.1287/mnsc.28.10.1174.
9.Chen, W.H. and Thizy, J.M. “Analysis ofrelaxations for the multi-item capacitated lot-sizing problem”, Annals of Operations Research, 26, pp. 29-72 (1990). https://doi.org/10.1007/BF02248584.
10.Baldo, T.A., Santos, M.O., Almada-Lobo, B., et al.“An optimization approach for the lot sizing andscheduling problem in the brewery industry”,Computers and Industrial Engineering, 72, pp. 58-71 (2014). https://doi.org/10.1016/j.cie.2014.02.008.
11.Gicquel, C. and Minoux, M. “Multi-product validinequalities for the discrete lot-sizing andscheduling problem”, Computers and OperationsResearch, 54, pp. 12-20 (2015). https://doi.org/10.1016/j.cor.2014.08.022.
12.Boonmee, A. and Sethanan, K. “A GLNPSO formulti-level capacitated lot-sizing and schedulingproblem in the poultry industry”, European Journalof Operational Research, 250(216), pp. 652-665(2016). https://doi.org/10.1016/j.ejor.2015.09.020.
13.Ceschia, S., Di Gaspero, L., and Schaerf, A. “Solvingdiscrete lot-sizing and scheduling by simulatedannealing and mixed integer programming”,Computers and Industrial Engineering, 114, pp. 235-243 (2017). https://doi.org/10.1016/j.cie.2017.10.017.
14.Curcio, E., Amorim, P., Zhang, Q., et al.“Adaptation and approximate strategies for solvingthe lot-sizing and scheduling problem undermultistage demand uncertainty”, InternationalJournal of Production Economics, 202, pp. 81-96(2018). https://doi.org/10.1016/j.ijpe.2018.04.012.
15.Wichmann, M.G., Johannes, C., and Spengler, T.S.“An extension of the general lot-sizing andscheduling problem (GLSP) with time-dependentenergy prices”, Journal of Business Economics, 89,pp. 481–514 (2019). https://doi.org/10.1007/s11573-018-0921-9.
16.Toscano, A., Ferreira, D., and Morabito, R. “Adecomposition heuristic to solve the two-stage lotsizing and scheduling problem with temporalcleaning”, Flexible Services and ManufacturingJournal, 31, pp. 142–173 (2019). https://doi.org/10.1007/s10696-017-9303-9.
17.Kaczmarczyk, W. “Valid inequalities forproportional lot-sizing and scheduling problemwith fictitious microperiods”, International Journal of Production Economics, 219, pp. 236-247 (2020). https://doi.org/10.1016/j.ijpe.2019.06.005.
18.Hu, Z. and Hu, G. “Hybrid stochastic and robustoptimization model for lot-sizing and schedulingproblems under uncertainties”, European Journalof Operational Research, 284(216), pp. 485-497(2020). https://doi.org/10.1016/j.ejor.2019.12.030.
19.Mohammadi, M. “Designing an integrated reliablemodel for stochastic lot-sizing and schedulingproblem in hazardous materials supply chain underdisruption and demand uncertainty”, Journal ofCleaner Production, 2020, 122621 (2021).https://doi.org/10.1016/j.jclepro.2020.122621.
20.Chen, Z. and Zhang, R. “A capital flow-constrainedlot-sizing problem with trade credit”, ScientiaIranica, 25(5), pp. 2775-2787 (2018).https://doi.org/10.24200/sci.2017.4444.
21.Cheng, Y., Wang, W., Wei, C., et al. “An integratedlot-sizing model for imperfect production withmultiple disposals of defective items”, ScientiaIranica, 25(2), pp. 852-867 (2018). https://doi.org/10.24200/sci.2017.4414.
22.Stadtler, H. and Meistering, M. “Modelformulations for the capacitated lot-sizing problemwith service-level constraints”, OR Spectrum, 41,pp. 1025–1056 (2019). https://doi.org/10.1007/s00291-019-00552-1.
23.Abrishami, S., Vahdani, H., and Rezaee, B. “Anintegrated lot-sizing model with supplier and carrier selection and quantity discounts consideringmultiple products”, Scientia Iranica, 27(4), pp.2140-2156 (2020). https://doi.org/10.24200/sci.2019.5155.1125.
24.Slama, I., Ben-Ammar, O., Dolgui, A., et al.“Genetic algorithm and Monte Carlo simulation fora stochastic capacitated disassembly lot-sizingproblem under random lead times”, Computers andIndustrial Engineering, 159, 107468 (2021).https://doi.org/10.1016/j.cie.2021.107468.
25.Li, Y., Saldanha-da-Gama, F., Liu, M., et al. “A risk-averse two-stage stochastic programming model for ajoint multi-item capacitated line balancing and lot-sizing problem”, European Journal of OperationalResearch, 304(1), pp. 353-365 (2023). https://doi.org/10.1016/j.ejor.2021.09.043.
26.Malekian, Y., Mirmohammadi, S.H., and Bijari, M.“Polynomial-time algorithms to solve the single-item capacitated lot sizing problem with a 1-breakpoint all-units quantity discount”, Computersand Operations Research, 134, 105373 (2021).https://doi.org/10.1016/j.cor.2021.105373.
27.Mula, J., Díaz-Madroñero, M., Andres, B., et al. “A capacitated lot-sizing model with sequence-dependent setups, parallel machines and bi-partinjection moulding”, Applied Mathematical Modelling, 100, pp. 805-820 (2021). https://doi.org/10.1016/j.apm.2021.07.028.
28.Koch, C., Arbaoui, T., Ouazene, Y., et al. “Capacitated multi-item lot sizing problem with OnLine, 54(1), pp. 564-569 (2021). https://doi.org/10.1016/j.ifacol.2021.08.064.
29.Gansterer, M., Födermayr, P., and Hartl, R.F. “Thecapacitated multi-level lot-sizing problem withdistributed agents”, International Journal ofProduction Economics, 235, 108090 (2021).https://doi.org/10.1016/j.ijpe.2021.108090.
30.Rezaei, S. and Behnamian, J. “Single-item lot-based supplying and batch production under abilateral capacity reservation: A partnershipstructure”, RAIRO-Operations Research, 55(2021), pp. 2633-2652 (2021). https://doi.org/10.1051/ro/2020099.
31.Mohammadi, M. and Fatemi Ghomi, S.M.T.“Genetic algorithm-based heuristic for capacitatedlot sizing problem in flow shops with sequence-dependent setups”, Expert Systems withApplications, 38, pp. 7201–7207 (2011). https://doi.org/10.1016/j.eswa.2010.12.038.
32.Behnamian, J., Fatemi Ghomi, S.M.T., Karimi, B.et al. “A Markovian approach for multi-level multi-product multi-period capacitated lot-sizing problemwith uncertainty in levels”, International Journal ofProduction Research, 55(18), pp. 5330-5340(2017). https://doi.org/10.1080/00207543.2017.1311048.
33.Behnamian, J., Fatemi Ghomi, S.M.T., Jolai, F., etal. “Realistic two-stage flowshop batch schedulingproblems with transportation capacity and time”,Applied Mathematical Modelling, 36, pp. 723–735(2012). https://doi.org/10.1016/j.apm.2011.07.011.
34.Jans, R. and Degraeve, Z. “Meta-heuristics fordynamic lot sizing: A review and comparison ofsolution approaches”, European Journal ofOperation Research, 177(3), pp.1851-1875 (2007).https://doi.org/10.1016/j.ejor.2005.12.008.
35.Swan, J., Adriaensen, S., Brownlee, A.E.I., et al.“Metaheuristics `In the Large’, European Journalof Operational Research, 297(2), pp. 393-406(2022). https://doi.org/10.1016/j.ejor.2021.05.042.
36.Behnamian, J., Fatemi Ghomi, S.M.T., Jolai, F., etal. “Minimizing makespan on a three-machineflowshop batch scheduling problem withtransportation using genetic algorithm”, AppliedSoft Computing, 12, pp. 768-777 (2012).https://doi.org/10.1016/j.asoc.2011.10.015.
37.Gen, M. and Cheng, R., Genetic Algorithms andEngineering Designs, 1st. Ed., New York: Wiley(1997).
38.Reeves, C.R. “A genetic algorithm for flow shopsequencing”, Computer and Operation Research,22(1), pp. 5-13 (1995).
https://doi.org/10.1016/0305-0548(93)E0014-K.
39.Mohammadi, M., Fatemi Ghomi, S.M.T., Karimi,B., et al. “Rolling horizon and fix-and-relaxheuristics for the multi-product multi-levelcapacitated lot sizing problem with sequence-dependent setups”, Journal of IntelligentManufacturing, 21, pp. 501–510 (2010).https://doi.org/10.1007/s10845-008-0207-0.