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This paper considered the multi-product multi-level multi-period capacitated lot-sizing and sequencing 
problem with setup carry-over and sequence-dependent family setup times and costs. A formulation of 
the problem was provided as a mixed-integer nonlinear programming model. To propose this 
formulation, first, the mixed-integer nonlinear of the problem was linearized, and then converted to a 
mixed-integer linear program. To solve large-size instances of the problem, then, a lower bound was 
provided. The results confirmed the efficiency of the proposed model compared to previous models in 
terms of  the runtime and the number of defined variables and constraints. Since this problem is NP-hard 
and adding other factors such as family setups, setup carry over and sequence-dependent setups increase 
its complexity, in this paper, a Genetic Algorithm (GA) was applied in large-size dimensions and its 
results were compared with the proposed lower bound. The numerical results showed that there is no 
significant difference between the results of the proposed GA and lower bound, and, so, the GA had been 
able to approach the optimal solution. 

1. Introduction
The subject of production and its importance has long 
been considered by researchers and craftsmen. Given the 
importance and complexity of this issue, production 
planning, which is one of the most important problems in 
this field, is of particular importance. The goal of 
production planning is the optimal use of production 
resources to produce products and goods according to 
market demand and unforeseen demands along the 
planning horizon. In this regard, determining lot sizing for 
each product is undoubtedly one of the key issues in 
production planning. This involves determining the time, 
amount and sequence of production, and it follows that at 
each stage of production, a setup time and cost is required 
to change production from one product to another; thus, 
the concept of economics of scale requires that products 
are produced in the lot. On other hand, with this decision, 
by increasing the size of the lot, the amount of inventory 
and maintenance costs will increase. In fact, reducing the 

number of lots increases the cost and time of 
commissioning and reduces inventory and maintenance 
costs. Therefore, determining the size of production lots 
is intended to minimize the total system costs. Also, the 
problem under consideration will be much more difficult 
and complex if it is accompanied by capacity constraints. 
Setup is the preparation of the workstation to perform the 
operation. Two types of simple and complex setup 
structures are defined, considering each of which, due to 
changes in the number of binary variables in the model, 
affects the complexity of the problem [1]. If the setup time 
and cost in a period are independent of the sequence in the 
current period and previous one, the setup structure is 
simple, and otherwise, it is complex. The complex setup 
structure is divided into several categories. In this regard, 
if the change of production from one product to another 
leads to spending time and cost whose amount depends on 
the product sequence, it is called sequence-dependent 
setup times. In more complex cases, setup may perform at 
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the end of a period, production may take place in the next 
time period, or it is possible to maintain the setup from the 
previous period to the current period [2]. On other hand, 
products with similarities in the manufacturing process can 
be classified into a family or group. In this case, the products 
have a major setup for the family or the main group with 
major time and cost, and have a minor setup for members of 
each family or subgroup with less time and cost. The 
problems with a complex setup, both in terms of modeling 
and solution, are much more difficult and important than 
problems with a simple setup structure [3]. 

One of the most common systems in the manufacturing 
industry is multi-level production systems with capacity 
limitations, each of which is likely to perform activities such 
as manufacturing, assembly, inspection, rework, or disposal. 
The main feature of these systems is to perform the process 
of each of the levels in a lot manner, which is due to the cost 
and time of setup at each level to perform the operation. 
Therefore, one of the most important and effective ways to 
control and reduce the cost of a production system is to make 
the right decision on the issue of determining the lot-size of 
products at each level of the production system. The 
Capacitated Lot-Sizing Problem (CLSP) is a tactical 
production problem that consists in deciding when and how 
many items to produce, minimizing the production costs 
assuring the demand constraints [4]. The Multi-Level CLSP 
with linked lot sizes (MLCLSP-L) is an extension of the big-
bucket MLCLSP, allows to carry over the setup state of a 
resource to the next periods following the setup. However, it 
incorporates partial sequencing of the production orders in 
the sense that the first and the last products produced in a 
period are determined by the model [5]. The problem with 
setup carry-over, besides reducing setup cost, provides 
additional capacity with the lack of setup time between 
consecutive periods [6].  

The proposed model in this paper determines the lot-size 
and production sequence at each level and period. In 
addition, production planning with family setup times and 
costs has been studied in this paper. This problem is a 
development of the classic MLCLSP-L. Since the multi-
level multi-period multi-item CLSP is an NP-hard problem, 
adding other factors such as family setups, setup carry over 
and sequence-dependent setups increases its complexity. In 
this problem, product families are groups of items with 
similar setups. Thus, the total setup cost and time are 
reduced, so there are two types of major and minor setups. 
Major setup is done when to produce an item, setup from one 
family to another family is performed. Minor setup is the 
type of setup that from one product to another product in the 
same family is made. Florian et al. [7] and Bitran and 
Yanasse [8] investigated a class of production planning 
problems that known demand has to be satisfied over the 
finite horizon at minimum total costs and production and 
storage cost functions are specified for each period. They 
show that single item CLSPs are NP-hard. Chen and Thizy 
[9] show that the multi-item CLSP is strongly NP-hard. So 
multi-level multi-period multi-item production planning 
problem with setup carry-over and sequence-dependent 

family setup times that have more binary variables for the 
complexity of setting up is also strongly NP-hard. So, a 
Genetic Algorithm (GA) was applied in large-size instances 
and its results were compared with the proposed lower 
bound. 

The remainder of this paper is organized as follows. In 
Section 2, the related literature is reviewed. In Section 3, a 
nonlinear mathematical model of the problem is introduced. 
In this section, linearization of the problem and a lower 
bound will also be presented. Section 4 describes the 
proposed GA. The performance of the presented model is 
validated in Section 5. Finally, we discuss the conclusions 
and future research directions in Section 6. 

2. Literature review 
Baldo et al. [10] studied a production lot-sizing and 
scheduling problem. In this research, as well as a mixed-
integer programming (MIP), they presented MIP-based 
heuristics for the brewery industry. Gicquel and Minoux [11] 
considered the multi-product lot-sizing and scheduling 
problem with sequence-dependent changeover costs. They 
proposed a branch & cut with some valid inequalities. For 
the multi-level capacitated lot-sizing and scheduling 
problem in hen egg production planning, Boonmee and 
Sethanan [12] proposed a MIP model. To minimize the total 
cost, they also applied a variant of particle swarm 
optimization. Ceschia et al. [13] studied the discrete single-
machine, multi-item lot-sizing and scheduling problem. 
After modeling the problem as a MIP model, to solve it, they 
proposed a simulated annealing algorithm.  

Curcio et al. [14] investigated the flexible production 
system in the lot-sizing and scheduling problem under 
multistage demand uncertainty on a rolling-horizon planning 
scheme. They proposed an approximate heuristic algorithm 
based on the robust optimization concept. Wichmann et al. 
[15] introduced the energy-efficient lot-sizing and 
scheduling problem. They analysed the cost-saving potential 
in this approach in comparison with classical planning. 
Toscano et al. [16] studied a two-stage lot-scheduling 
problem with buffers, mandatory temporal cleanings for the 
preparation tanks and production lines, and production 
synchronization. They proposed a two-phase heuristic 
algorithm for this problem. Kaczmarczyk [17] addressed the 
proportional lot-sizing and scheduling problem with fictitious 
micro periods. In this regard, they designed a Mixed-Integer 
Linear Programming (MILP) model in which some valid 
inequalities were utilized. For lot-sizing and scheduling 
problem considering supplier flexibility in satisfying a fraction 
of demand, Hu and Hu [18] presented a stochastic/robust 
optimization approach. In their proposed approach, the 
demand and overtime processing cost were simultaneously 
uncertain. Considering a complex setup structure with 
hazardous materials, Mohammadi [19] integrated the lot-
sizing with scheduling problem. This paper proposed a MIP 
model to maximize profit with demand choice flexibility in a 
trade-off and minimize the risk of hazardous materials 
incidents. The author also extended the chance-constrained 
programming model with uncertain demand. 
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Chen and Zhang [20] incorporated capital flow 
constraints and trade credit to lot-sizing problems. They 
formulate a mathematical model for this problem. After 
dividing the model into sub-linear problems without integer 
variables, it was solved with dynamic programming and a 
heuristic. To find the optimal order quantity, the number of 
shipments and the number of defective item disposals in 
Cheng et al. [21], after proving a vendor-buyer inventory 
model, a heuristic was proposed. Stadtler and Meistering 
[22] presented a model for the lot-sizing problem with 
capacity constraint in which both the periodic and cyclic 
service levels were studied. To minimize setup and holding 
costs, a lower bound is provided. Abrishami et al. [23] 
considered the integrated lot-sizing model with supplier 
problem considering multiple products and multiple 
purchasing items over multiple periods. To minimize the 
total purchase, inventory, production, and transportation 
costs, after proposing a MILP model, they proposed a GA. 
Slama et al. [24] considered the capacitated dynamic lot-
sizing problem with external procurement, defective and 
back-ordered items, setup times, and extra capacity. In this 
study, to maximize the disassembly process, the MIP model 
was proposed.  Li et al. [25] investigated a production 
planning problem under uncertain demand in which the 
considered problem consists of two subproblems: an 
assembly line balancing problem and a CLSP. They modeled 
this problem as two-stage stochastic programming and 
validated it by a case study. Malekian et al. [26] studied the 
single-item CLSP considering a 1-breakpoint all-units 
quantity discount. They, first, proved the properties of the 
optimal solution. Then, they proposed an implicit 
enumeration exact algorithm with speed-up techniques to 
reduce its time complexity. Finally, they presented a heuristic 
algorithm for large-size instances. Mula et al. [27] addressed 
the CLSP with sequence-dependent setups and parallel 
machines in a bi-part injection molding. They provided a 
MILP model for a second-tier supplier of the automotive 
sector. For the off-the-road tire industry, Koch et al. [28] 
considered a lot-sizing problem. Considering several real-
world constraints in this problem, they introduced a mixed-
integer linear program. In the context of cloud manufacturing, 
Ganstereet et al. [29] introduced the capacitated multi-level lot-
sizing problem with transshipments and setup carry-over with 
components that can only be produced by one specific agent. 
After modeling this problem mathematically, they proposed a 
matheuristic based on a fix-and-optimize procedure. Rezaei and 
Behnamian [30] studied a single-item lot-based supply and 
batch production under a bilateral capacity reservation contract 
based on a partnership structure. They proposed a mathematical 
model and dynamic programming algorithm for solving this 
problem. 

The proposed model in the current paper is monolithic and 
is quickly solved. In addition to sequence-dependent family 
setups, this multi-level model, for the first time, considers setup 
carry-over.  

3. Mathematical modelling
As stated in the previous sections, economic lot-size 
determination problems in the field of flowshop problems 

are modelled by the capacitated resources available in the 
subject literature, have a simple setup structure, or are 
assumed to have only one of the complex setups. Given that 
this assumption was not considered in any of the reviewed 
papers in the field of production planning, this paper 
generalizes the assumption of a complex setup structure in 
flowshop systems with limited production capacity. 

In the following, after introducing the parameters, 
decision variables, and indices used in this research, based 
on Mohammadi and Fatemi Ghomi [31] and Behnamian et 
al. [32], the presented mathematical model will be described. 

Parameters and indices 

T Number of periods 
Z Number of levels 
m Number of families 
𝑟𝑟𝑗𝑗 Number of products in family j 
𝑐𝑐𝑖𝑖𝑗𝑗𝑖𝑖𝑖𝑖 Production cost per unit of product i of family j 

in level z during period t 
ℎ𝑖𝑖𝑗𝑗𝑖𝑖𝑖𝑖 Holding cost per unit of product i of family j in 

level z during period t 
𝑑𝑑𝑖𝑖𝑗𝑗𝑖𝑖 Net demand for product i of family j during 

period t 
𝑐𝑐𝑖𝑖𝑗𝑗𝑖𝑖𝑖𝑖 Production cost per unit of product i of family j 

in level z during period t 
𝑞𝑞𝑖𝑖𝑗𝑗𝑖𝑖𝑖𝑖 Production time per unit of product i of family j 

in level z during period t 
𝑠𝑠𝑖𝑖𝑖𝑖𝑗𝑗𝑖𝑖𝑖𝑖 Setup cost from product i of family j to product 

k of family j in level z during period t 
𝑆𝑆𝑇𝑇𝑖𝑖𝑖𝑖𝑗𝑗𝑖𝑖𝑖𝑖 Setup time from product i of family j to product 

k of family j in level z during period t 
𝑠𝑠𝑖𝑖𝑗𝑗𝑖𝑖𝑖𝑖 Setup cost from family i to family j in level z 

during period t 
𝑆𝑆𝑇𝑇𝑖𝑖𝑗𝑗𝑖𝑖𝑖𝑖 Setup time from family i to family j in level z 

during period t 
𝑅𝑅𝑖𝑖𝑖𝑖 Available capacity in level z during period t 
M A big number 

Decision variables 

𝑥𝑥𝑖𝑖𝑗𝑗𝑖𝑖𝑖𝑖 Production quantity (lot-size) of product i of 
family j in level z during period t 

𝐼𝐼𝑖𝑖𝑗𝑗𝑖𝑖𝑖𝑖 Inventory level of product i of family j in level 
z during period t 

𝑦𝑦𝑗𝑗𝑖𝑖𝑖𝑖 1, if the setup of family j occurs in level z 
during period t; 0, otherwise 

𝑧𝑧𝑖𝑖𝑗𝑗𝑖𝑖𝑖𝑖 1, if the setup of product i of family j occurs in 
level z during period t; 0, otherwise 

𝑇𝑇𝑖𝑖𝑗𝑗𝑖𝑖𝑖𝑖 1, if the setup of family j occurs after setup of 
family k in level z during period t; 0, 
otherwise  

𝑇𝑇𝑖𝑖𝑖𝑖𝑗𝑗𝑖𝑖𝑖𝑖 1, if the setup of product i occurs after setup of 
product k of family j in level z during period t; 
0, otherwise 

𝑎𝑎𝑗𝑗𝑖𝑖𝑖𝑖 1, if family j is the latest family produced in 
level z during period t; 0, otherwise 

𝑏𝑏𝑗𝑗𝑖𝑖𝑖𝑖 1, if family j is the first family produced in 
level z during period t; 0, otherwise 

𝑢𝑢𝑗𝑗𝑖𝑖𝑖𝑖 1, if family j is single-family produced in level 
z during period t; 0, otherwise 

𝑎𝑎𝑖𝑖𝑗𝑗𝑖𝑖𝑖𝑖 1, if product i of family j is the latest product 
produced in level z during period t; 0, 
otherwise 
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𝑏𝑏𝑖𝑖𝑗𝑗𝑖𝑖𝑖𝑖 1, if product i of family j is the first product 
produced in level z during period t; 0, 
otherwise 

𝑢𝑢𝑖𝑖𝑗𝑗𝑖𝑖𝑖𝑖  1, if product i of family j is single product 
produced in level z during period t; 0, 
otherwise 

𝑀𝑀𝐴𝐴𝑖𝑖𝑖𝑖𝑗𝑗𝑖𝑖𝑖𝑖 1, if the setup of product i of family j that has 
been retained, occurs after setup of product k 
of family j in level z at the end of period t; 0, 
otherwise 

𝑀𝑀𝐵𝐵𝑖𝑖𝑖𝑖𝑗𝑗𝑖𝑖𝑖𝑖 1, if the setup of product i of family j that has 
been retained, occurs after setup of product k 
of family j in level z at the beginning of period 
t; 0, otherwise 

𝐿𝐿𝐴𝐴𝑖𝑖𝑗𝑗𝑖𝑖𝑖𝑖 1, if the setup of family j occurs after setup of 
family i in level z at the end of period t; 0, 
otherwise 

𝐿𝐿𝐵𝐵𝑖𝑖𝑗𝑗𝑖𝑖𝑖𝑖 1, if the setup of family j occurs after setup of 
family i in level z at the beginning of period t; 
0, otherwise 

𝛾𝛾𝑗𝑗𝑖𝑖𝑖𝑖 1, if the setup of family j is retained in level z 
from period t-1 to period t; 0, otherwise. 

3.1. Mathematical formulation 

The proposed model, denoted as Model P1, can be 
formulated as follows: 

( )
1 1 1 1

Min . .
jrT Z m

ijzt ijzt ijzt ijzt
t z j i

Z c x h I
= = = =
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The objective function (1) minimizes the sum of 
production, holding and sequence-dependent setup costs 
for families and products. Constraints (2) and (3) are the 
production- inventory balance equations. Constraints (4) 
ensure that the total production and setup time in each 
period and the level do not exceed the available capacity. 
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Requirement (5) guarantees that a product is produced 
only if its family has been setup. Constraint (6) ensures 
that a product is produced if that product has been setup. 
Constraint (7) represents if family j is latest or single-
family in level z during period t-1 and family i is first or 
single-family in level z and period t, setup from family j 
to family i occurs in level z at the end of period t-1 or at 
the beginning of period t. Constraint (8) shows that at least 
one of the last two variables is 1. Constraint (9) represents 
that if the setup of family j has occurred and family j is 
latest or single-family in level z and during period t, then 

1,
0

m
kjztk k j

T
= ≠

=∑  necessarily, otherwise 
1,

 1
m

kjztk k j
T

= ≠
≤∑ . 

Constraint (10) represents that if the setup of family j has 
occurred and family 𝑗𝑗 is the first or single-family in level z and 

during period t, then 
1,

0
m

jkztk k j
T

= ≠
=∑ necessarily, in 

otherwise 
1,

 1
m

jkztk k j
T
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≤∑ . Constraints (11) and (12) ensure 

that a family is single-family that is produced in level z and 

period t if the value of 
1

1m
jztj

y
=

=∑ , otherwise the value of 

1
 0m

jztj
u

=
=∑ . Constraint (14) represents if product i of 

family 𝑗𝑗 is the latest or single product in level z during period t-
1 and product k of family j is first or single product in level z and 
period t, setup from product i to product k occurs in level z at the 
end of period t-1 or at the beginning of period t. Constraint (15) 
shows that at least one of the last two variables is 1. Constraint 
(16) represents that if the setup of product 𝑖𝑖 of family j has 
occurred and product i is the latest or single product of family j 

in level z and during period t then
1,

0
m

ikjztk k j
T

= ≠
=∑

necessarily, otherwise
1,
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k k j= ≠∑ 1ikjztT ≤ . Constraint (17) 
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family j produced in level z during period t. Constraints (18) and 
(19) ensure that a product is a single product that is produced in 

level z and period t if the value of 
1

1jr
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=
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1

' 0.jr
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setup of product i of family j has occurred and product i is first 
or single product of family j in level z and during period t then 

1,
' 0jr
kijztk k i

T
= ≠

=∑ necessarily, otherwise 
1,

1. 
m

ikjztk k j
T

= ≠
≤∑

Constraints (21) and (22) show that a product or a family at 
most is one of first, single, or the latest families and 
products, respectively. Constraints (23) to (26) represent 
that at most, one of the families or one of the products is 
first, single and the latest family or product in level z 
during period t. Constraint (27) shows binary variables. 
Constraint (28) ensures that lot-size and inventory level 

can be greater than or equal to zero. And Constraint (29) 
represents that the initial inventory is 0. 

3.2. Model linearization 

Model P1 is nonlinear due to the quadratic terms in 
Constraints (11), (17), and (18). The nonlinear model can be 
converted into an equivalent linear model through two non-
negative variables. These variables are defined as follows: 

: ztω Positive if at least one family is produced in level z 
during period t; Otherwise, 0. 

' : jztω Positive if at least one product of family j is 

produced in level z during period t; Otherwise, 0. 

The linearized integer programming model (called Model 
P2) is as follows: 

( )
1 1 1 1

Min . .
jrT Z m

ijzt ijzt ijzt ijzt
t z j i

Z c x h I
= = = =

= +∑∑∑∑

      
´ ´

1 1 1 1 1

.
j jr rT Z m

kijztkijzt
t z j i k

s T
= = = = =

 +  
 ∑∑∑∑∑  

( )
1 1 1 1

.
T Z m m

ijzt ijzt
t z j i

s T
= = = =

+∑∑∑∑ ,           (30) 

s.t.:

1

                , , ,
jr

ijzt jzt
i

z y j z t
=

≥ ∀∑  (31)

1

, ,
m

jzt zt
j

y z tω
=

≥ ∀∑       (32)

1

' , ,
jr

ijzt jzt
i

z z tω
=

≥ ∀∑ (33)

1

, ,
m

jzt zt
j

a z tω
=

≤ ∀∑   (34)

1

' ' , ,
jr

ijzt jzt
i

a z tω
=

≤ ∀∑    (35)

0 1                , ,zt z tω≤ ≤ ∀                    (36)

0 ' 1  , , ,jzt j z tω≤ ≤ ∀                         (37) 
and Constraints (2)-(10), (12)-(16), (19)-(29). 

3.3. A numerical example 
To better describe the mathematical model, a small-size 
instance is designed and solved. In this regard, consider  a 
flowshop with two machines that produces five products 
in two families for a three-period programming horizon (T 
= 3; Z = 2; N = 5; F = 2; r1 = 2; r2 = 3). Tables 1 to 5 show 
the parameters used in this instance. 



Figure 1: The solution of the numerical example. 

Table 1. The demand for products. 
Family, product 1,1 1,2 2,3 2,4 2,5 

1 10 30 20 20 50 
Period 2 20 40 30 30 30 

3 50 20 50 40 40 

The family setup, sequence-dependent setup and carry-
over setup times are generated randomly, but mentioning them 
prolongs the subject. The obtained optimal solution of the 
problem is 3120 and the sequence of production of products 
and the lot-size of production are shown in Figure 1. 

3.4. Development of a lower bound 

One of the common ways to evaluate the performance of 
algorithms is to use the lower bound of the optimal solution 
[33]. In this regard, first, suppose a lower bound is obtained 
from solving model P1. Model P1 is the mathematical model 
that its binary variables are relaxed between 0 and 1. The 
proposed lower bound is obtained from solving Model P2. 
Model P2 is achieved by adding Constraints (37) and (38) to the 
Model M1. 

1

1  , ,
m

kjzt
k

T j z t
=

≤ ∀∑ ,         (38) 

1

' 1  , , ,  
jr

ikjzt
i

T k j z t
=

≤ ∀∑ .         (39) 

Theorem 1. P2 is a lower bound for the problem. 

Proof 1. Suppose there is a (j,z,t) in the optimal solution that 
infracts Constraint (37), namely ∑ 𝑇𝑇𝑖𝑖𝑗𝑗𝑖𝑖𝑖𝑖 ≥ 2𝑚𝑚

𝑖𝑖=1 . Assume 
𝑇𝑇𝑖𝑖1𝑗𝑗𝑖𝑖𝑖𝑖 = 1 and  𝑇𝑇𝑖𝑖2𝑗𝑗𝑖𝑖𝑖𝑖 = 1. Suppose only families k1, k2,  and j 
are produced in level z and period t. These variables do not 
include carry-over variables. If at the best case setup cost is: 

1 1
.k jzt k jztsetup cost T S=

2 2 2 2
.. .   jk zt jk zt k jzt k jztT S T S+ +    (40) 

According to triangle inequality: 

1 2 1 2
.k jzt jk z kt k ztS S S+ ≥          (41) 

Thus: 

1 1 2 2
. .k jzt k jzt jk zt jk ztT S T S+

2 2 1 2 1 2
. .k jzt k jzt k k zt k k ztT S T S+ ≥

   
2 2

. . k jzt k jztT S+  (42) 

Now suppose only families k1, k2, k3 and j are produced in level 
z and period t. If at the best case setup cost is: 

1 1 2 2
. .k jzt k jzt jk zt jk ztsetup cost T S T S= +

 
2 3 2 3 3 3

. ..k k zt k k zt k jzt k jztT S T S+ +           (43) 

According to triangle inequality: 

1 2 1 2
. k jzt jk zt k k ztS S S+ ≥   (44) 

Thus: 

1 1 2 2 2 3 2 3
. . .k jzt k jzt jk zt jk zt k k zt k k ztT S T S T S+ +

 
3 3 1 2 1 2

. .k jzt k jzt k k zt k k ztT S T S+ ≥

2 3 2 3 3 3
. ..k k zt k k zt k jzt k jztT S T S+ +            (45) 

This proof is true for all possible sequences and 

1
1m

kjztk
T

=
≤∑ . Therefore Constraint (37) always applies to 

the optimal solution and it can prove similarly that Constraint 
(38) always applies to the optimal solution thus P2 is a lower 
bound for the main model. P2 without binary variables reduces 
the region of possible solution and runtime. This shows the 
superiority of this lower bound. 

The proposed model, due to its NP-hardness, cannot be solved 
in large-size dimensions. Therefore, in the next subsection, a GA 
will be presented for solving large-size instances. 

4. Genetic Algorithm (GA)
As mentioned in the previous subsections, the problem under 
consideration is strongly NP-hard. So a meta- heuristic 
algorithm is required for solution in real dimensions. 
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Table 2. The variable production time of products. 
Machine  1 Machine  2 

Family  1 Family  2 Family  1 Family  2 
Product 

1 
Product

2 
Product

3 
Product

4 
Product

5 
Product

1 
Product

2 
Product

3 
Product

4 
Product

5 
Period  1 1 2 1.5 3 1 2 1.5 1 1 2 
Period  2 2 1 2.5 1.5 2 1.5 2 2.5 2 2.5 
Period  3 1.5 1 2 2.5 1.5 1.5 1 1 1 1 

Table 3. The variable production cost of products. 
Machine  1 Machine  2 

Family  1 Family  2 Family  1 Family  2 
Product 

1 
Product

2 
Product

3 
Product

4 
Product

5 
Product

1 
Product

2 
Product

3 
Product

4 
Product

5 
Period  1 3 5 3 1 4 1 3 2 1 4 
Period  2 4 2 3 4 2 2 2 4 1 3 
Period  3 5 4 2 3 2 4 2 2 3 5 

Table 4. The holding cost of products. 
Machine  1 Machine  2 

Family  1 Family  2 Family  1 Family  2 
Product 

1 
Product

2 
Product

3 
Product

4 
Product

5 
Product

1 
Product

2 
Product

3 
Product

4 
Product

5 
Period  1 0.5 0.3 0.5 0.3 0.25 0.2 0.6 0.3 0.8 0.6 
Period  2 1 0.25 0.1 0.75 0.45 0.5 0.7 0.2 0.3 0.25 
Period  3 0.25 0.7 0.3 0.1 0.25 0.5 0.3 0.4 0.2 0.5 

Table 5. The capacity of machines. 

Machine  1 Machine  2 

Period  1 
Period  2 
Period  3 

600 
400 
600 

400 
800 
500 

Meta-heuristic methods are efficient approaches to solving 
complex integer programming problems, all of which use an 
intelligent random search process in problem-solving to 
achieve a near-optimal solution. In this regard, to solve CLSP 
in real dimensions, different meta-heuristic methods such as 
tabu search, simulated annealing, etc., have been developed 
[34]. In this paper, a GA is used to solve the problem. This 
algorithm has always been one of the most widely used meta-
algorithms [35] that has always been considered by 
researchers in various fields of optimization [36].  

GA is an intelligent and probabilistic search method that 
simulates Darwin's evolution theory by considering a 
population of solutions (each solution is called a 
chromosome) and the use of its operators, i.e., crossover and 
mutation, in each reproduction. In the GA, each solution in 
the population is evaluated according to its fitness function, 
and the solutions with better fitness have more opportunities 
for reproduction. At this stage, offspring are generated and 
replaced with unsuitable solutions in the current population. 
In other words, the combination of existing solutions through 
the crossover as well as mutation and selection operators 
produces new solutions and this cycle is repeated until it 
reaches a stopping criterion [37]. In this section, the 
implementation detail of a GA is presented. 

Figure 2. A sample chromosome. 

• Chromosome representation: In this paper, as shown in
Figure 2, chromosomes are represented as matrices with
∑ 𝑟𝑟𝑗𝑗 × 𝑍𝑍 × 𝑇𝑇𝑚𝑚
𝑗𝑗=1 dimensions. Figure 1 depicts a sample

chromosome for a specific iteration of a problem with
m=2, Z=5, T=3, r1=3, and r2=5.

According to the model structure, a product is produced or 
not produced at a specific level and period. So a gene is 
considered as a product whose value is 1 if the product 
would be produced, otherwise 0.  

The binary system is the best system to display 
chromosomes. Thus variables 0 and 1 are identified and the 
problem is converted to a linear programming problem. So, 
production and inventory levels are specified through 
solving the problem.  
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Table 6. The demands of families 1 and 2 in the planning horizon. 
Family 1 2 
Product 1 2 3 4 5 6 7 8 9 

1 10 20 50 30 20 30 50 20 30 
Period 2 20 40 10 20 40 50 30 40 20 

3 50 30 20 40 50 20 30 20 40 

• Initial population: Chromosomes are produced
randomly. There are no repetitive chromosomes in this
stage. If the chromosome is not feasible, it will be
removed. Population size in this GA is the same as the
algorithm of Mohammadi and Fatemi Ghomi [31]; they
tested population size (3Z, 4Z and 5Z) in their article.

• Selection operator: The roulette wheel has been used to
undergo a selection operation.

• Crossover operation: In this study, a two-point
crossover (SB2OX) has been used. In addition, the two-
point crossover is another used operator in this article.
In this operator, two crossover points are selected
randomly within a chromosome; then, the two parent
chromosomes are interchanged between these points to
produce two new offsprings.

• Mutation operator: Here, the shift mutation is used in
this paper because this mutation has been appropriate
performance in the sequence-dependent scheduling
problems [38].

• Stopping criterion: In this paper, the maximum number
of generations has been set to reach the pre-set number
of generations without improvement in the final best
solution.

5. Computational results
In this section, the numerical results in two, small and large, 
dimensions are investigated. All computational experiments 
in this section were performed on an Asus laptop Intel core 
i7 with 2.2 GHz CPU and 4GB Ram. The integer linear 
programming model was solved with LINGO 8 and the 
algorithm was coded in MATLAB. 

5.1. Test problems 
In order to evaluate the performance of our model, the 
numerical examples were generated randomly. In this regard, 
consider a production system with eight products in the plant 
is aggregated into two families. Each family contains 
multiple products. Family 1 is comprised of products 1 to 4 
and family 2 is comprised of products 5 to 9. This production 
system has three levels. The planning horizon is 12 months 
and every four months is one period. The demands of the two 
families can be forecasted accurately according to 
production planners’ expertise and are summarized, for each 
period, in Table 6.  
      All cost and time parameters can be collected from the plant. 
The sequence-dependent setup times and costs among the 
families and products and other parameters are specified as 
random numbers. Also, the demands generated in this paper 
follow normal distributions with different means and standard 
deviations determined by the actual data in Table 6. 

Table 7: Dimension of problems used in the calibration of 
parameters 

Problems 

Parameters 1 2 3 4 
M 2 5 7 10 
Z 2 5 7 10 
T 2 5 7 10 

�𝑟𝑟𝑗𝑗

𝑚𝑚

𝑗𝑗=1

 
4 15 21 50 

5.2. Parameters tuning 
In this subsection, with the aim of tuning the proposed 
algorithm, the full factorial design method is chosen in which 
all possible combinations of the following factors are tested. 
Note that for determining the size of the algorithm 
population, the choice is based on the number of levels of the 
problem to be solved because it is a very important factor in 
the complexity of the problem. 

- Crossover type (CRT): 2 levels (two-point and SB2OX); 

- Crossover probability (CRP): 3 levels (0.5, 0.6, 0.7); 

- Mutation probability (MUP): 3 levels (0.1, 0.2, 0.3); 

- Population Size (PS): 3 levels (3M, 4M, 5M). 

All the cited factors result in 2×3×3×3=54 different 
combinations and, thus 54 different GAs. Every algorithm is 
tested with a set of problems presented in Table 7. 

There is one replicate for each combination; therefore, 
4×54=216 problems have been solved. As a percentage of 
increase over the lower bound, based on Mohammadi et al. 

[39], the response variable is 
4

1
[( ) / ]

isol i ii
Heu LB LB

=
−∑ , 

100 / 4× inwhich 𝐻𝐻𝐻𝐻𝑢𝑢𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖  is the solution obtained by a 
specific problem and 𝐿𝐿𝐵𝐵𝑖𝑖  is the lower bound for this 
particular problem. Performing the same procedure for all 
combinations and parameters, the following ‘‘best case’’ 
calibrations of the proposed algorithm are CRT: SB2OX, 
CRP: 0.6, MUP: 0.2, and PS: 5 M. 

5.3. Numerical results in small-size instances 
In this subsection, we compare the proposed model with the 
model presented by Mohammadi and Fatemi Ghomi [31] in 
a small-size dimension. The number of positive variables, 
integer variables, and constraints of the proposed model is 
2106, 1611, and 1579, respectively, while these values for 
the modified model proposed by them are 8100, 6561, and 
6870, respectively. Therefore, our model with more elaborate 
features can be solved with less computational effort than the 
model proposed by Mohammadi and Fatemi Ghomi [31], in 
addition to considering family setup times and costs. 



9 J. Behnamian et al./ Scientia Iranica (2025) 32(4): 5025 

Table 8. Comparison of the optimal solution and the lower bound of model P2. 

No. 
Main model Lower bound 

Difference 
OV Runtime (s) OV Runtime(s) 

1 3815 12 3745 <1 %1.8 
2 4295 30 4200 <1 %2.2 
3 6633 417 6475 <1 %2.4 
4 9463 1264 9223 1 %2.5 

OV: Objective function value 

Table 9. Comparison of the proposed model and modified Mohammadi and Fatemi Ghomi (2011) 

No. Problem size 
Proposed model Modified Mohammadi and 

Fatemi Ghomi’s model 
OV Runtime (s) OV Runtime (s) 

1 m=2; Z=2; T=2; r1=2; r2=1; 674 <1 674 130 
2 m=2; Z=2; T=3; r1=5; r2=4; 4295 16 4295 357 
3 m=2; Z=3; T=3; r1=5; r2=4; 6633 417 6633 9592 
4 m=3; Z=3; T=4; r1=3; r2=4; r3=3; 12328 853 - >14400 

Table 10. Comparison of developed lower bound and proposed GA. 
Problem size Genetic algorithm Lower bound Percentage of 

 differences 
(%) M Z T �𝒓𝒓𝒋𝒋

𝒎𝒎

𝒋𝒋=𝟏𝟏

 OV Runtime OV 

2 2 2 5 216 52.41 211.93 %1.9 
2 3 3 5 461.21 89.46 450.86 %2.2 
2 3 3 9 766.36 64.23 749.5 %2.3 
2 3 5 9 1058.2 91.09 1017.9 %3.8 
3 5 5 12 1633 295.62 1563.4 %4.3 
3 5 7 12 2341.25 312.53 2169.87 %7.3 
3 7 7 14 4624.81 439.31 4250.2 %8.1 
4 3 3 15 3992.43 250.87 3736.914 %6.4 
4 3 5 15 4731.43 747.29 4395.498 %7.1 
4 7 7 15 9247.21 1562.45 8433.456 %8.8 
5 7 10 20 21580.64 3939.82 18537.77 %14.2 
5 10 10 20 33862.44 2793.5 27293.13 %19.4 
5 15 15 20 65371.39 3738.29 54192.88 %17.1 

The lower bound P2 for this problem size has 2106 positive 
variables, 0 integer variables and 4333 constraints. This 
model does not contain an integer variable, so it is a linear 
model and can be solved more quickly. Table 8 shows the 
results of such tests. Note that the last column of this table 
shows the difference between the lower bound and the 
optimal solution objective functions. 

Table 8 shows that the lower bound proposed in this 
paper is a tight bound and reduces runtime significantly. 
Also, we solved several problems with different dimensions 
by our proposed model and compared them with modified 
Mohammadi and Fatemi Ghomi [31]. The results are shown 
in Table 9. This table indicates that the model presented in 
this paper is more efficient. According to Table 9, two points 
must be noticed. First of all, the runtime of the two models 
is different, and as you can see in the table, this difference is 
very significant, and this is our proposed model, which takes 
much less time. The next point, which is the result of the 
difference in runtimes, is the limitation of the Mohammadi 
and Fatemi Ghomi’s model in solving larger-size instances 
so that, as shown in Table 4, due to the limitation of the 
runtime, the Mohammadi and Fatemi Ghomi’s model has not 
been able to find the solution in problem 4, while the 

proposed model of this research has been able to achieve an 
optimal solution in a much shorter time. 

5.4. Numerical results in large-size instances 
Table 10 shows a comparison between the developed lower 
bound against the proposed GA. 

To verify the statistical validity of the results shown in Table 
10 and confirm which the best algorithm between GA and LB is, 
a Kruskal–Wallis test as a non-parametric method has been 
performed. The obtained results are shown in Figures 3 and 4.  

As you can see, there is no significant difference between the 
results of the proposed GA and the lower bound, and this is an 
indication of the quality of the proposed algorithm to achieve the 
optimal solution.  

6. Conclusions and future research
This paper proposed a nonlinear model for multi-level, 
multi-product and multi-period production planning with 
setup carry-over and sequence-dependent family setup time. 
Then, it was converted into an equivalent linear model 
through two non-negative variables and eliminating three 
constraints and adding seven linear constraints. 
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Figure 3: Statistical analysis. 

Figure 4. Comparison results. 

We compared this linear model and the existing model in the 
literature. The numerical results indicated the efficiency of 
our model because we could solve problems in a shorter time 
and a larger dimension. We also proposed a lower bound in 
order to decrease the solution space. Due to the Np-hardness 
of the considered problem, a genetic algorithm was also 
proposed to solve large-size instances. The proposed lower 
bound and the genetic algorithm were compared and the 
result showed that the obtained results showed that there is 
no significant difference between the genetic algorithm and 
lower bound. Applying other meta-heuristic algorithms to 
face this complex problem is suggested as a direction for 
future research. Also, considering stochastic demand and 
processing times is another area for future studies.  
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