Experimental study of effect of laser machining process of CO2 on electrical conductivity and magnetic properties of PMMA/MWCNT composite

Document Type : Article


1 Department of Mechanical Engineering, Tabriz Branch, Islamic Azad University, 5157944533, Tabriz, Iran

2 Institute for Polymers and Composites (IPC), Department of Polymer Engineering, Campus of Azurem, University of Minho, 4800-058 Guimaraes, Portugal


The present work aims to investigate the effect of the parameters of the laser machining process and laser line angle to injection direction of sample plastics on the electrical resistance of Polymethyl Methyl Methacrylate (PMMA)/Multi-Wall Carbon Nanotubes (MWCNT) Nano-composite. The laser machining process was performed on the samples considering a combination of power, feed rate, and laser line angle with respect to to the direction of melted flow parameters. According to the obtained results from electrical resistance and magnetic properties measurements, this was demonstrated that the laser line angle to the direction of melted flow does not statistically, and physically affect the electrical resistance of the composite. And increasing laser machining power leads to electrical resistance reduction. On another hand, feed rate enhancement (with fixed lasering power) causes increasing the electrical resistance. Moreover, this is found out that laser machining does not significantly affect the magnetic properties of the samples.


1. Thostenson, E.T., Li, C., Chou, T.W. "Nanocomposites in context", Compos. Sci. Technol., 65, pp. 491- 516 (2005).
2. Taylor, R., Coulombe, S., Otanicar, T., et al. "Small particles, big impacts: A review of the diverse applications of nanofluids", J. Appl. Phys., 113, pp. 011301-011320 (2013).
3. Lalwani, G., Gopalan, A., DAgati, M., et al. "Porous three-dimensional carbon nanotube scaffolds for tissue engineering", J. Biomed. Mater. Res., Part A, 103, pp. 3212-3225 (2015).
4. Zhang, X.X., Tejada, J., Hernandez, J.M., et al. "Quantum tunneling of the magnetic moment", Contrib. to Sci., ISSN-e 1575-6343, 1(1), pp. 25-38 (1999).
5. Ghavidel, A.K., Azdast, T., Shabgard, M., et al. "Improving electrical conductivity of poly methyl methacrylate by utilization of carbon nanotube and CO2 laser", J. Appl. Polym. Sci., 132, 42671 (2015).
6. Lee, W.J., Lee, S.E., Kim, C.G. "The mechanical properties of MWNT/PMMA nanocomposites fabricated by modified injection molding", Compos. Struct., 76, pp. 406-410 (2006).
7. Karimzad Ghavidel, A., Azdast, T., Shabgard, M.R., et al. "Effect of carbon nanotubes on laser cutting of multi-walled carbon nanotubes/poly methyl methacrylate nanocomposites", Opt. Laser Technol., 67, pp. 119-124 (2015).
8. Davim, J.P., Barricas, N., Conceicao, M., et al. "Some experimental studies on CO2 laser cutting quality of polymeric materials", J. Mater. Process. Technol., 198, pp. 99-104 (2008).
9. Moraczewski, K., Rytlewski, P., Malinowski, R., et al. "Comparison of some effects of modification of a polylactide surface layer by chemical, plasma, and laser methods", Appl. Surf. Sci., 346, pp. 11-17 (2015).
10. Liebscher, M., Krause, M.B., Potschke, P., et al. "Achieving electrical conductive tracks by laser treatment of non-conductive polypropylene/polycarbonate blends filled with MWCNTs", Macromol. Mater. Eng., 299, pp. 869-877 (2014).
11. Gan, X., Fei, G., Wang, J., et al. "Powder quality and electrical conductivity of selective laser sintered polymer composite components", Struct. Prop. Addit. Manuf. Polym. Components., pp. 149-185 (2020).doi:10.1016/B978-0-12-819535-2.00006-5.
12. Yuan, S., Zheng, Y., Chua, C.K., et al. "Electrical and thermal conductivities of MWCNT/polymer composites fabricated by selective laser sintering", Compos. Part A Appl. Sci. Manuf., 105, pp. 203-213 (2018).
13. Ning, N., Huang, W., Liu, S., et al. "Highly stretchable liquid metal/polyurethane sponge conductors with excellent electrical conductivity stability and good mechanical properties", Compos. Part B Eng., 179, p. 107492 (2019).
14. Kim, E.J., Lee, C.M. "Experimental study on power consumption of laser and induction assisted machining with inconel 718", J. Manuf. Process., 59, pp. 411-420 (2020).
15. Kumar Sharma, A., Kumar Jain, P., Vyas, R., et al. "Study of thermal stability and dielectric behavior of PANI/MWCNT nanocomposite", Mater. Today Proc., 38, pp. 1259-1262 (2021).
16. Wang, L., Qiu, H., Liang, C., et al. "Electromagnetic interference shielding MWCNT-Fe3O4@Ag/epoxy nanocomposites with satisfactory thermal conductivity and high thermal stability", Carbon N. Y., 141, pp. 506-514 (2019).
17. Kumar, L., Sahoo, S.K., and Alam, S.N. "Effect of xGnP/MWCNT reinforcement on mechanical, wear behavior and crystallographic texture of copper-based metal matrix composite", Mater. Sci. Eng. B., 263, p. 114888 (2021).
18. Kunde, G.B., Sehgal, B., Ganguli, A.K. "Modified EISA synthesis of NiAl2O4/MWCNT composite mesoporous free-standing film as a potential electrochemical capacitor material", J. Alloys Compd., 856, 158019 (2021).
19. Arrechea, S., Guerrero-Gutierrez, E.M.A., Velasquez, L., et al. "Effect of additions of multiwall carbon nanotubes (MWCNT, MWCNT-COOH and MWCNTThiazol) in mechanical compression properties of a cement-based material", Materialia, 11, p. 100739 (2020).
20. Chayad, F.A., Jabur, A.R., and Jalal, N.M. "Effect of MWCNT addition on improving the electrical conductivity and activation energy of electrospun nylon films", Karbala Int. J. Mod. Sci., 1, pp. 187-193 (2015).
21. Todd, R.H., Allen, D.K., and Alting, L., Manufacturing Processes Reference Guide, Industrial Press Inc (1994).
22. Min, C., Shen, X., Shi, Z., et al. "'The Electrical properties and conducting mechanisms of carbon nanotube/ polymer nanocomposites: A review", Polym. Plast. Technol. Eng., 49, pp. 1172-1181 (2010).
23. Ray, S.C., Pao, C.W., Tsai, H.M., et al. "Hightemperature annealing effects on multiwalled carbon nanotubes: Electronic structure, field emission and magnetic behaviors", J. Nanosci. Nanotechnol, 9, pp. 6799-6805 (2009).
24. Seidel, G.D. and Lagoudas, D.C. "A micromechanics model for the electrical conductivity of nanotubepolymer nanocomposites", J. Compos. Mater, 43, pp. 917-941 (2009).
25. Gao, G., C agin, T., and Goddard III, W.A. "Energetics, structure, mechanical and vibrational properties of single-walled carbon nanotubes", Nanotechnology, 9, p. 184 (1998).
26. Ivanova, V.T., Katrukha, G.S., Timofeeva, A.V., et al. "The sorption of influenza viruses and antibiotics on carbon nanotubes and polyaniline nanocomposites", J. Phys. Conf. Ser., 291, p. 012004 (2011).