On use of subsampling of the non-respondents for estimation of distribution function

Document Type : Article

Authors

1 Department of Statistics, Quaid-i-Azam University, Islamabad, 45320, Pakistan

2 Department of Mathematics and Statistics, The University of North Carolina at Greensboro, NC 27412, USA

Abstract

In this study, we propose a general class of estimators of the finite population distribution function (DF) using two auxiliary variables under subsampling of non-respondents. We use the Hansen and Hurwitz [1] pioneered model in our subsampling technique. Layout of response and non-response classes are discussed in various tables in detail. Expressions for the biases and mean square errors (MSEs) of the estimators are obtained up to first order of approximation. We also obtain the conditions by comparing the proposed estimator with existing estimators. Three real data sets are used to support the theoretical findings. In our findings, it is observed that the proposed class of estimators is more efficient as compared to all other existing estimators including the usual mean estimator, ratio estimator, exponential-ratio estimator, traditional difference estimator, Rao [2] difference estimator, Kumar et al. [3] estimator and many other recent difference type estimators by using the criterion of MSE.

Keywords


References:
1. Hansen, M.H. and Hurwitz, W.N. "The problem of non-response in sample surveys", 41(236), pp. 517-529 (1946). DOI: 10.1080/01621459.1946.10501894.
2. Rao, T.J. "On certain methods of improving ratio and regression estimators", Communications in Statistics- Theory and Methods, 20(10), pp. 3325-3340 (1991).DOI: 10.1080/03610929108830705.
3. Kumar, S., Trehan, M., and Joorel, J.S. "A simulation study: Estimation of population mean using two auxiliary variables in stratified sampling", Journal of Statistical Computation and Simulation, 88(18), pp. 3694- 3707 (2018). DOI: 10.1080/00949655.2018.1532513.
4. Gupta, S. and Shabbir, J. "On improvement in estimating the population mean in simple random sampling", Journal of Applied Statistics, 35(5), pp. 2540- 2559 (2008). DOI: 10.1080/02664760701835839.
5. Khan, M. and Shabbir, J. "A general class of estimators for finite population mean using auxiliary information in the presence of nonresponse when using second raw moments", VFAST Transactions on Mathematics, 2(2), pp. 19-36 (2013). DOI: 10.21015/vtm.v2i2.129.
6. Verma, H.K. Sharma, P., and Singh, R. "Some ratiocum- product type estimators for population mean under double sampling in the presence of non-response", Journal of Statistics, Applications and Probability, 3(3), pp. 379-385 (2014). DOI: 10.12785/jsap/030310.
7. Bhushan, S. and Kumar, A. "On cost efficient classes of estimators for population mean in presence of measurement errors and non-response simultaneously", International Journal of Statistics and Systems, 12(1), pp. 93-117 (2017).
8. Kumar, S. and Bhoughal, S. "Study on nonresponse and measurement error, using double sampling scheme", Journal of Statistics Application and Probability Letters, 5(1), pp. 43-52 (2018). DOI: 10.18576/jsapl/ 050105.
9. Saleem, I., Sanaullah, A., and Hanif, M. "A generalized class of estimators for estimating population mean in the presence of nonresponse", Journal of Statistical Theory and Application, 17(4), pp. 616-626 (2018). DOI: 10.2991/jsta.2018.17.4.4.
10. Ahmad, S., Arslan, M., Khan, A., et al. "A generalized exponential-type estimator for population mean when using auxiliary attribute", Plos One, 16(5), e0246947, pp. 1-29 (2021). DOI: 10.1371/journal.pone.0246947.
11. Waseem, Z., Khan, H., and Shabbir, J. "Generalized exponential type estimator for the mean of sensitive variable in the presence of non-sensitive auxiliary variable", Communications in Statistics - Theory and Methods, 50(14), pp. 3477-3488 (2021). DOI: 10.1080/03610926.2019.1708399.
12. Yaqub, M. and Shabbir, J. "Estimation of population  distribution function in the presence of nonresponse", Hacettepe Journal of Mathematics and Statistics, 47(2), pp. 471-511 (2018). DOI: 10.1080/03610918.2022.2078492.
13. Yaqub, M. and Shabbir, J. "Estimation of population distribution function involving measurement error in the presence of nonresponse", Communications in Statistics-Theory and Methods, 49(10), pp. 2540-2559 (2020). DOI: 10.1080/03610918.2022.2078492.
14. Ahmed, M.S. and Abu-Dayyah, W. "Estimation of finite population distribution function using multivariate auxiliary information", Statistics in Transition, 5(3), pp. 501-507 (2001). DOI: 10.1371/journal. pone.0243584.
15. Wang, S. and Dorfman, A.H. "A new estimator for the population distribution function", Biometrika, 83, pp. 639-652 (1996). 
16. Singh, H.P., Singh, R., and Kozak, M. "A family of estimators of finite population distribution function using auxiliary information", Acta Applied Mathematica, 104, pp. 115-130 (2008). DOI: 10.1007/s10440- 008-9243-1.
17. Munoz, J.F., Alvarez, E., and Rueda, M. "Optimum design based ratio estimators of the distribution function", Journal of Applied Statistics, 41(7), pp. 1395-1407 (2013). DOI: 10.1080/02664763.2013.870983.
18. Irfan, M., Javed, M., and Lin, Z. "Efficient ratiotype estimators of finite population mean based on correlation coefficient", Scientia Iranica, 25(4), pp. 2361-2372 (2018). DOI: 10.24200/sci.2017.4455.
19. Abid, M., Ahmad, S., Tahir, M., et al. "Improved ratio estimators of variance based on robust measures", Scientia Iranica, 26(4), pp. 2484-2494 (2019). DOI: 10.24200/sci.2018.20604.
20. Abid, M., Naeem, A., Hussain, Z., et al. "Investigating the impact of simple and mixture priors on estimating sensitive proportion through a general class of randomized response models", Scientia Iranica, 26(2), pp. 1009-1022 (2019). DOI: 10.24200/sci.2018.20166.
21. Javed, M., Irfan, M., and Pang, T. "Hartely-Ross type unbiased estimator of population mean using two auxiliary variables", Scientia Iranica, 26(6), pp. 3835- 3845 (2019). DOI: 10.24200/sci.2018.5648.1397.
22. Naz, F., Abid, M., Nawaz, T., et al. "Enhancing efficiency of ratio-type estimators of population variance by a combination on robust location measures", Scientia Iranica, 27(4), pp. 2040-2056 (2020). DOI: 10.24200/sci.2019.5633.1385.
23. Younis, F. and Shabbir, J. "Estimation of general parameters under stratified adaptive cluster sampling based on dual use of auxiliary information", Scientia Iranica, 28(3), pp. 1780-1801 (2021). DOI: 10.24200/sci.2019.52515.2753.
24. Ahmed, S. and Shabbir, J. "On the use of ranked set sampling for estimating super population total: Gamma population model", Scientia Iranica, 28(1), pp. 465-476 (2021). DOI: 10.24200/sci.2019.50976.1946.
25. Nazir, H.Z., Abid, M., Akhtar, N., et al. "An efficient mixed-memory-type control chart for normal and nonnormal process", Scientia Iranica, 28(3), pp. 1736- 1749 (2021). DOI: 10.24200/sci.2019.51437.2177.
26. Chami, P., Sing, B., and Thomas, D. "A twoparameter ratio-product-ratio estimator using auxiliary information", ISRN Probability and Statistics, Article ID 10368, pp. 1-15 (2012). DOI: 10.5402/2012/103860.
27. Guha, S. and Chandra, H. "Improved estimation of finite population mean in two-phase sampling with subsampling of the nonrespondents", Mathematical Population Studies, 28(1), pp. 24-44 (2020). DOI: 10.1080/08898480.2019.1694325.
28. Singh, G.N. and Usman, M. "Improved regression cum ratio estimators using information on two auxiliary variables dealing with subsampling technique of non response", Journal Statistical Theory and Practice, 14(1), pp. 1-28 (2020). DOI: 10.1007/s42519-019- 0082-3.
29. Singh, S. "Advanced Theory of Sampling with Applications: How Michal selected Ammey", Kulwer Academy, London (2003). DOI: 10.1007/978-94-007- 0789-4.
30. Gujrati, D.H. and Porter, D.C., Basic Econometrics, McGraw Hill Irwin (2020). 
Volume 31, Issue 18
Transactions on Industrial Engineering (E)
November and December 2024
Pages 1625-1637
  • Receive Date: 12 April 2020
  • Revise Date: 10 August 2021
  • Accept Date: 08 November 2021