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Abstract. In this study, we propose a general class of estimators of the �nite population
Distribution Function (DF) using two auxiliary variables under subsampling of non-
respondents. We use the Hansen and Hurwitz pioneered model in our subsampling
technique. Layout of response and non-response classes are discussed in various tables
in detail. Expressions for the biases and Mean Square Errors (MSEs) of the estimators are
obtained up to �rst order of approximation. We also obtain the conditions by comparing
the proposed estimator with existing estimators. Three real data sets are used to support
the theoretical �ndings. In our �ndings, it is observed that the proposed class of estimators
is more e�cient as compared to all other existing estimators including the usual mean
estimator, ratio estimator, exponential-ratio estimator, traditional di�erence estimator,
and many well-known di�erence type estimators by using the criterion of MSE.
© 2024 Sharif University of Technology. All rights reserved.

1. Introduction

The problem of non-response is common in sample
survey due to many reasons such as non-availability at
home or unwilling to respond due to social desirability
concerns or the fear of catching some contagious disease
such as Covid-19 virus by having a contact with
interviewer. Hansen and Hurwitz [1] were the �rst
who oated the indigenous idea of nonresponse. Much
work has been done since to deal the non-response
by constructing composite types of estimators. The
ratio, product, exponential-ratio and regression type
estimators are commonly in this context (see Rao [2]

*. Corresponding author. Tel.: +92 0300 5273086
E-mail address: javid.shabbir@uow.edu.pk (J. Shabbir)

and Kumar et al. [3]). Some related work is credit
to Gupta and Shabbir [4], Khan and Shabbir [5],
Verma et al. [6], Bhushan and Kumar [7], Kumar and
Bhoughal [8], Saleem et al. [9], Ahmed et al. [10],
Waseem et al. [11] and Yaqub and Shabbir [12,13].

Most of this work is based on estimation of �nite
population mean, total and variance but very little
attention has been paid to estimating the Distribution
Function (DF). Some works on estimating the DF can
be found in Ahmad and Abu-Dayyah [14], Wang and
Dorfman [15], Singh et al. [16] and Munoz et al. [17].
Some other useful references are, Irfan et al. [18],
Abid et al. [19], Abid et al. [20], Javed et al. [21],
Naz et al. [22], Younis and Shabbir [23], Ahmed and
Shabbir [24] and Nazir et al. [25].

In our study, we propose a new class of estimators
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for estimating the DF under subsampling of non-
respondents when nonresponse exists on the study
variable as well as on the auxiliary variables.

Consider a �nite population U = fU1; U2; :::; UNg
of N units portioned into two classes i.e., (i) response
class with size N1 and (ii) nonresponse class with
size N2. Using Hansen and Hurwitz [1] technique, a
sample of size n is drawn from U by using Simple
Random Sampling Without Replacement (SRSWOR).
We assume that n1 of the sampled units respond and n2
do not. Let a sub-sample of r units be drawn from the
n2 non-responding units by SRSWOR and we collect
the information on these r units by the interviewing
method as r = n2

K , (K > 1). Let yi and (xi; zi)
(i = 1; 2; � � � ; n) be the values of the study variable
(Y ) and the auxiliary variables (X;Z) respectively.
We are interested in estimating the DF de�ned as

FY (ty) = 1
N

NP
i=1

I(yi � ty),�1 < ty < 1, where I(:) is

the indicator function such that I = (1; 0). Similarly,
we can de�ne:

FX(tx) =
1
N

NX
i=1

I(xi� tx); and

FZ(tz) =
1
N

NX
i=1

I(zi� tz):
The DF under strati�cation is:

FY (ty) = G1F
(1)
Y (ty) +G2F

(2)
Y (ty) where

Gi =
Ni
N

(i = 1; 2); F (1)
Y (ty) =

1
N1

N1X
i=1

I(yi � ty);

and F (2)
Y (ty) =

1
N2

N2X
i=1

I(yi � ty):

Hansen and Hurwitz [1] estimator of DF under nonre-
sponse is de�ned as:

F̂ �FY (ty) = g1F̂
(1)
Y (ty) + g2F

(2r)
Y (ty) where

gi =
ni
n

(i = 1; 2);

F̂ (1)
Y (ty) =

1
n1

n1X
i=1

I(yi � ty);

and

F̂ (2r)
Y (ty) =

1
r

rX
i=1

I(yi � ty):

Similarly, we can de�ne:

F̂ �FX(tx) = g1F̂
(1)
X(tx) + g2F̂

(2r)
X(tx);

and

F̂ �FZ(tz) = g1F̂
(1)
Z(tz) + g2F

(2r)
Z(tz):

Let:

S2
FY (ty) = FY (ty)

�
1� FY (ty)

�
;

S2
FX(tx) = FX(tx)

�
1� FX(tx)

�
;

and

S2
FZ(tz) = FZ(tz)

�
1� FZ(tz)

�
;

be the �nite population variances for Y , X, and Z
respectively for the response class. Similarly, the
population variances for the non-response class are
de�ned as:

S2(2)
FY (ty)

= F (2)
Y (ty)

�
1� F (2)

Y (ty)

�
;

S2(2)
FX(tx) = F (2)

X(tx)

�
1� F (2)

X(tx)

�
;

and

S2(2)
FZ(tz)

= F (2)
Z(tz)

�
1� F (2)

Z(tz)

�
:

Let:

SFYX(ty;tx) =
N110N220 �N120N210

N2 ;

SFY Z(ty;tz) =
N101N202 �N102N201

N2 ;

SFXZ(tx;tz) =
N011N022 �N012N021

N2 ;

be the population covariances for the response class in
their respective subscripts and similarly the population
covariances for the non-response class in their respec-
tive subscripts are:

S(2)
FYX(ty;tx) =

N (2)
110N

(2)
220 �N (2)

120N
(2)
210

N (2)2 ;

S(2)
FY Z(ty;tz) =

N (2)
101N

(2)
202 �N (2)

102N
(2)
201

N (2)2 ;

S(2)
FXZ(tx;tz) =

N (2)
011N

(2)
022 �N (2)

012N
(2)
021

N (2)2 :

The layout for response and non-response classes are
given in Tables 1{6.

Here N110, N120, N210, and N220 are the number
of units in the population and similarly n110, n120, n210,
and n220 be the number of units in the sample in their
respective cells of respondents.

Here N (2)
110, N (2)

120, N (2)
210, and N (2)

220 are the number
of units in the population and similarly n(2)

110, n(2)
120, n(2)

210,
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Table 1. Layout of the response class for Y and X.

X � FX(tx) X > FX(tx) Total

Y � FY (ty) n110=N110 n120=N120 N100

Y > FY (ty) n210=N210 n220=N220 N200

Total N010 N020 N

Table 2. Layout of the non-response class for Y and X.

X2 � F (2)
X (tx) X2 > F (2)

X (tx) Total

Y2 � F (2)
Y (ty) n(2)

110=N
(2)
110 n(2)

120=N
(2)
120 N (2)

100

Y2 > F (2)
Y (ty) n(2)

210=N
(2)
210 n(2)

220=N
(2)
220 N (2)

200

Total N (2)
010 N (2)

020 N

Table 3. Layout of the response class for Y and Z.

Z � FZ(tz) Z > FZ(tz) Total

Y � FY (ty) n101=N101 n102=N102 N100

Y > FY (ty) n201=N201 n202=N202 N200

Total N001 N002 N

Table 4. Layout of the non-response class for Y and Z.

Z2 � F (2)
Z (tz) Z2 > F (2)

Z (tz) Total

Y2 � F (2)
Y (ty) n(2)

101=N
(2)
101 n(2)

102=N
(2)
102 N (2)

100

Y2 > F (2)
Y (ty) n(2)

201=N
(2)
201 n(2)

202=N
(2)
202 N (2)

200

Total N (2)
001 N (2)

002 N

Table 5. Layout of the response class for X and Z.

Z � FZ(tz) Z > FZ(tz) Total

X � FX(tx) n011=N011 n012=N012 N010

X > FX(tx) n021=N021 n022=N022 N020

Total N001 N002 N

Table 6. Layout of the non-response class for X and Z.

Z2 � F (2)
Z (tz) Z2 > F (2)

Z (tz) Total

X2 � F (2)
X (tx) n(2)

011=N
(2)
011 n(2)

012=N
(2)
012 N (2)

010

X2 > F (2)
X (tx) n(2)

021=N
(2)
021 n(2)

022=N
(2)
022 N (2)

020

Total N (2)
001 N (2)

002 N

and n(2)
220 be the number of units in the sample in their

respective cells of respondents.
Here N101, N102, N201, and N202 are the number

of units in the population and similarly n101, n102, n201,
and n202 be the number of units in the sample in their
respective cells of respondents.

Here N (2)
101, N (2)

102, N (2)
201, and N (2)

202 are the number
of units in the population and similarly n(2)

101, n(2)
102, n(2)

201,
and n(2)

202 be the number of units in the sample in their
respective cells of respondents.

Here N011, N012, N021, and N022 are the number
of units in the population and similarly n011, n012, n021,
and n022 be the number of units in the sample in their
respective cells of respondents.

Here N (2)
110, N (2)

012, N (2)
021, and N (2)

022 are the number
of units in the population and similarly n(2)

011, n(2)
012, n(2)

021,
and n(2)

022be the number of units in the sample in their
respective cells of respondents.

Now we de�ne some error terms to obtain the
biases and Mean Square Errors (MSEs) up to �rst order
of approximation.

��0 =
F �Y (ty) � FY (ty)

FY (ty)
; ��1 =

F �X(tx) � FX(tx)

FX(tx)
;

��2 =
F �Z(tz) � FZ(tz)

FZ(tz)
;

such that E(��i ) = 0 for (i = 0; 1; 2), and

E(��20 ) =
1

F 2
Y (ty)n
�1S2

FY (ty) + �2S
(2)2
FY (ty)

o
= ��200;

E(��21 ) =
1

F 2
X(tx)n
�1S2

FX(tx) + �2S
(2)2
FX(tx)

o
= ��020;

E(��22 ) =
1

F 2
Z(tz)n
�1S2

FZ(tz) + �2S
(2)2
FZ(tz)

o
= ��002;

E(��0��1) =
1

FY (ty)FX(tx)n
�1SFYX(ty;tx) + �2S

(2)
FYX(ty;tx)

o
= ��110;

E(��0��2) =
1

FY (ty)FZ(tz)n
�1SFY Z(ty;tz) + �2S

(2)
FY Z(ty;tz)

o
= ��101;
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E(��1��2) =
1

FX(tx)FZ(tz)n
�1SFXZ(tx;tz) + �2S

(2)
FXZ(tx;tz)

o
= ��101;

where some equations are shown in Box I.
Now we discuss some estimators of DF using

single auxiliary variable and two auxiliary variables.

2. Existing estimators

In this section, we discuss the following estimators:

(i) The variance of the usual estimator F̂ �FY (ty) =
F̂ �0 , is given by:

V ar(F̂ �0 ) = F 2
Y (ty)�

�
200: (1)

(ii) The traditional ratio estimator, is given by:

F̂ �R1
= F̂ �Y (ty)

 
FX(tx)

F̂ �X(tx)

!
: (2)

The bias and MSE respectively of F̂ �R1
, to �rst

order of approximation, are given by:

B(F̂ �R1
) �= F 2

Y (ty) f��020 � ��110g ; (3)

and

MSE(F̂ �R1
) �= F 2

Y (ty) f��200 + ��020 � 2��110g :
(4)

(iii) The traditional exponential-ratio type estimator,
is given by:

F̂ �E1
= F̂ �Y (ty) exp

 
FX(tx) � F̂ �X(tx)

FX(tx) + F̂ �X(tx)

!
: (5)

The bias and MSE respectively of F̂ �E1
, to �rst

order of approximation, are given by:

B(F̂ �E1
) �= F 2

Y (ty)

�
3��020

8
� ��110

2

�
; (6)

and

MSE(F̂ �E1
)�=F 2

Y (ty)

�
��200+

��020
4
���110

�
: (7)

(iv) The usual di�erence estimator, is given by:

F̂ �D1
= F̂ �Y (ty) + d0

�
FX(tx) � F̂ �X(tx)

�
; (8)

where d0 is the constant.
The minimum variance of F̂ �D1

at the opti-

mum value of d0(opt) = FY (ty)��110
FX(tx)��020

, is given by:

V ar(F̂ �D1
)min =MSE(F̂ �D1

)min �=
F 2
Y (ty)�

�
200
�
1� ��2110

�
; (9)

where ��110 = ��110p
��200

p
��020

.

(v) Rao [2] di�erence type estimator, is given by:

F̂ �Rao = d1F̂ �Y (ty) + d2

�
FX(tx) � F̂ �X(tx)

�
; (10)

where di(i = 1; 2) are the constants.
The bias and minimum MSE respectively of

F̂ �Rao at optimum values of:

d1(opt) =
1

1 + ��020(1� ��2110)
;

and

d2(opt) =
FY (ty)��110

FX(tx)��020 f1 + ��020(1� ��2110)g ;
are given by:

Bias(F̂ �Rao) �= (d1 � 1)FY (ty) (11)

and

MSE(F̂ �Rao)min�=F 2
Y (ty)

��200
�
1� ��2110

�
1+��200 (1� ��2110)

: (12)

(vi) Gupta and Shabbir [4] estimator using two aux-
iliary variables, is given by:

F̂ �GS =
n
J1F̂ �Y (ty) + J2

�
FX(tx) � F̂ �X(tx)

�o
(
FX(tx)

F̂ �X(tx)

)
;

(13)

�1 =
�

1
n
� 1
N

�
; �2 =

N2(K � 1)
Nn

;

��def =
E
�n
F �Y (ty) � FY (ty)

odn
F �X(tx) � FX(tx)

oen
F �Z(tz) � FZ(tz)

of�
fFY (ty)gdfFX(tx)gefFZ(tz)gf :

Box I
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where Ji(i = 1; 2) are the constants.
The bias and minimum MSE respectively of

F̂ �GS at optimum values of

J1(opt) =
BjCj �DjEj +Bj
AjBj � E2

j +Bj

J2(opt) =
FY (ty)(AjDj � CjEj +Dj � Ej)

FX(tx)(AjBj � E2
j +Bj)

;

are given by:

Bias(F̂ �GS) �= (J1 � 1)FY (ty)

+ J1FY (ty)Cj + J2FX(tx)Dj ; (14)

MSE(F̂�GS)min �= F 2
Y (ty)(

1�AjD
2
j+BjC2

j �2CjDjEj+2BjCj�2DjEj+Bj
(Aj Bj�E2

j +Bj)

)
; (15)

where Aj=��200+��020�2��110, Bj=��020,
Cj=

3��020
8 ���110

2 , Dj=
��020

2 , Ej=��020���110.
(vii) The traditional ratio estimator using two auxil-

iary variables, is given by:

F̂ �R2
= F̂ �Y (ty)

 
FX(tx)

F̂ �X(tx)

! 
FZ(tz)

F̂ �Z(tz)

!
: (16)

The bias and MSE respectively of F̂ �R2
to �rst

order of approximation are given by:

B(F̂ �R2
)�=FY (ty)

f��020+��002+��011���110���101g ; (17)

and

MSE(F̂ �R2
) �= F 2

Y (ty)

f��200+��020+��002�2��110�2��101+2��011g : (18)

(viii) The traditional exponential ratio estimator using
two auxiliary variables, is given by:

F̂ �E2
=F̂ �Y (ty) exp

 
FX(tx) � F̂ �X(tx)

FX(tx) + F̂ �X(tx)

!

exp

 
FZ(tz) + F̂ �Z(tz)

FZ(tz) + F̂ �Z(tz)

!
: (19)

The bias and MSE respectively of F̂ �E2
to �rst

order of approximation, are given by:

B(F̂ �E2
) �= FY (ty)�

3
8

(��020+��002)� 1
2

(��110���101)+
1
4

��011

�
; (20)

and

MSE(F̂ �E2
) �=F 2

Y (ty)

�
��200 +

1
4

(��020 + ��002)

� (��110 + ��101) +
1
2

��011

�
: (21)

(ix) The usual di�erence estimator using two auxil-
iary variables, is given by:

F̂ �D2
=F̂ �Y (ty) + d1

�
FX(tx) � F̂ �X(tx)

�
+ d2

�
FZ(tz) � F̂ �Z(tz)

�
; (22)

where di(i = 1; 2) are constants.
The minimum variance or MSE of F̂ �D2

at
the optimum values of di(i = 1; 2) i.e.:

d1(opt) =
FY (ty) (��101��011 � ��002��110)
FX(tx) (��2011 � ��020��022)

;

and

d2(opt) =
FY (ty) (��011��110 � ��020��101)
FZ(tx) (��2011 � ��020��022)

:

The minimum MSE is given in Box II

or MSE (F̂ �D2
)min �= F 2

Y (ty)�
�
200�

1� ��2110+��2101�2��110��101��011
1���2011

�
; (23)

where,

��110 =
��110p

��200
p

��020
; ��101 =

��101p
��200

p
��002

;

��011 =
��011p

��020
p

��002
:

MSE(F̂ �D2
)min �= F 2

Y (ty)

�
��2101��020 � 2��101��011��110 + ��2011��200 � ��020��002��200 + ��2110��002

��2011 � ��020��002

�
:

Box II
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(x) Kumar et al. [8] estimator using two auxiliary
variables, is given by:

F̂ �KU =F̂ �Y (ty)

 
FX(tx)

F̂ �X(tx)

!
(
�0 exp

 
FZ(tx) � F̂ �Z(tx)

FZ(tx) + F̂ �Z(tx)

!

+(1��0) exp

 
F̂ �Z(tx) � FZ(tx)

F̂ �Z(tx) + FZ(tx)

!)
; (24)

where �0 is the constant.
The bias and minimum MSE respectively of

F̂ �KU to �rst order of approximation at optimum
value of:

�0(opt) =
1
2
� (��011 � ��101)

��002
;

are given by:

B(F̂ �KU )�=FY (ty)

�
��020+

�
1
2
� �0

�
(��101 � ��011)�

�
1
8
� 1

2
�0

�
��002

�
; (25)

and

MSE(F̂ �KU )min �= F 2
Y (ty)(

(��200 + ��020 �2��110)� (��011���101)
2

��002

)
: (26)

(xi) On the lines of Chami et al. [26], Guha and Chan-
dra [27] and Singh and Usman [28] estimators
using two auxiliary variables, we have:

F̂ �Ch =F̂ �Y (ty)

(
�1F̂ �X(tx) + (1� �1)FX(tx)

(1� �1)F̂ �X(tx) + �1FX(tx)

)
(
�2F̂ �Z(tz) + (1� �2)FZ(tz)

(1� �2)F̂ �Z(tz) + �2FZ(tz)

)
; (27)

where �i(i = 1; 2) are the constants.

The bias and minimum MSE respectively of
F̂ �Ch at the optimum values of �i(i = 1; 2) i.e.:

�1(opt) =
1
2

�
1 +

(��101��011 � ��002��110)
(��2011 � ��020��022)

�
and

�2(opt) =
1
2

�
1� (��020��101���011��110)

(��2011���020��022)

�
; (28)

are given by:

Bias(F̂ �Ch) �= FY (ty)

�
(2�1 � 1) ��110 + (2�2 � 1)

��101 + (2�1 � 1) (2�2 � 1)

��011 (1� �1) (1� 2�1) ��020 + (1� �2)

(1� 2�2) ��002

�
; (29)

and Eq. (30) is shown in Box III. The minimum
MSE of F̂ �Ch is equal to minimum MSE of the
di�erence estimator F̂ �D2

.

(xii) Singh and Usman [28] estimator using two auxil-
iary variables, is given by:

F̂ �SU =
n
F̂ �Y (ty) + �̂�110

�
FX(tx) � F̂ �X(tx)

�o
(
1F̂ �X(tx) + (1� 1)FX(tx)

(1� 1)F̂ �X(tx) + 1FX(tx)

)
(
2F̂ �Z(tz) + (1� 2)FZ(tz)

(1� 2)F̂ �Z(tz) + 2FZ(tz)

)
; (31)

where i(i = 1; 2) are constants and �̂�110 =
F̂Y (ty)�̂�110

F̂X(tx)�̂�020
is the sample regression coe�cient with

the corresponding population regression coe�-
cient ��110 = FY (ty)��110

FX(tx)��020
. It is observed that:

MSE(F̂ �SU )min =MSE(F̂ �D2
)min

=MSE(F̂ �Ch)min:

MSE(F̂ �Ch)min �= F 2
Y (ty)

�
��2101��020 � 2��101��011��110 + ��2011��200 � ��020��002��200 + ��2110��002

��2011 � ��020��002

�
: (30)

Box III
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3. Proposed estimator

We propose the following general class of di�erence
type estimators of DF using two auxiliary variables.
This estimator is constructed by using the ratio and
exponential-ratio type estimators with the di�erence
type estimator as:

F̂ �P (�1;�2) =
�
!1F̂ �Y (ty) + !2

�
FX(tx) � F̂ �X(tx)

�
+ !3

�
FZ(tz) � F̂ �Z(tz)

��
�
8<: FX(tx)

F̂ �X(tx)

!�1
exp �2

 
FX(tx)�F̂ �X(tx)

FX(tx)+F̂ �X(tx)

!9=; ;(32)

where !i(i=1; 2; 3) are the constants and (0 � �i � 1)
(i = 1,2) are known scaler values.

Rewriting F̂ �P (�1;�2) in terms of errors terms, we
have:

F̂ �P (�1;�2) � FY (ty) �= (!1 � 1)FY (ty) + !1FY (ty)�
��0 � ��1��1 + ��2��21 � ��1��0��1

�
� !2FX(tx)

�
��1 � ��1��21

�
� !3FZ(tz) [��2 � ��1��1��2] ; (33)

where ��1 =
�
�1 + �2

2

�
and:

��2 =
�
�1�2

2
+
�1(�1 + 1)

2
+
�2(�2 + 2)

8

�
:

From Eq. (33), the bias of F̂ �P (�1;�2), is given by:

Bias(F̂ �P (�1;�2)) �= (!1 � 1)FY (ty)

+ !1FY (ty) f��2��020 � ��1��110g
+ FZ(tz)��1 (!2��020 + !3��011) : (34)

Squaring and then taking expectation on Eq. (33), we
get MSE of F̂ �P (�1;�2), which is given by:

MSE(F̂ �P (�1;�2)) �= (!1 � 1)2F 2
Y (ty)

+ !2
1F

2
Y (ty)A+ !2

2F
2
X(tx)B

+ !2
3F

2
Z(tz)C � 2!1F 2

Y (ty)D

� 2!2FY (ty)FX(tx)E � 2!3FY (ty)

FZ(tz)F + 2!1!2FY (ty)FX(tx)G

+ 2!1!3FY (ty)FZ(tz)H + 2!2!3FX(tx)FZ(tz)I;

where,

A = ��200 +
�
��21 + 2��2

�
��020 � 4��1��110;

B = ��020; C = ��002; D = ��2��020 � ��1��110;

E = ��1��020; F = ��1��011; G = 2��1��020 � ��110;

H = 2��1��011 � ��101; I = ��011:

The minimum MSE of F̂ �P (�1;�2) at optimum values of

!i(i = 1; 2; 3) i.e., !1(opt) = l5
l1 !2(opt) = FY (ty)l6

FX(tx)l1
and

!3(opt) = FY (ty)l7
FZ(tz)l1

, is given by:

MSE(F̂ �P (�1;�2))min �= F 2
Y (ty)

�
l2 + l3 + l4

l1

�
; (35)

where,

l1 = ABC �BH2�AI2 +BC � CG2 +2GHI �I2;

l2 =�ABF 2�BCD2 + 2BDFH +ABC �ACE2

+ 2AEFI�2BCD�BF 2+2BFH�BH2;

l3 =2CDEG+D2I2 � 2DEHI � 2DFGI

+ E2H2 � 2EFGH+F 2G2�AI2�CE2;

l4 =2CEG� CG2 + 2DI2 + 2EFI � 2EHI

� 2FGI + 2GHI;

l5 =BCD �BFH +BC � CEG�DI2

+ EHJ + FGI � I2;

l6 =ACE �AFI � CDG+DHI � EH2

+ FGH + CE � CG� FI +HI;

l7 =ABF �BDH �AEI +BF �BH
+DGI + EGH � FG2 � EI +GI:

We can generate many estimators from this proposed
class of estimators as follows:

(i) Putting �1 = 0 and �2 = 0 in Eq. (32), we get:

F̂ �P (0;0) =!1F̂ �Y (ty) + !2

�
FX(tx) � F̂ �X(tx)

�
+ !3

�
FZ(tz) � F̂ �Z(tz)

�
: (36)
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(ii) Putting �1 = 1 and �2 = 0 in Eq. (32), we get:

F̂ �P (1;0)

=
�
!1F̂ �Y (ty) + !2

�
FX(tx) � F̂ �X(tx)

�
+ !3

�
FZ(tz) � F̂ �Z(tz)

�� FX(tx)

F̂ �X(tx)

!
: (37)

(iii) Putting �1 = 0 and �2 = 1 in Eq. (32), we get:

F̂ �P (1;1) =
�
!1F̂ �Y (ty) + !2

�
FX(tx) � F̂ �X(tx)

�
+ !3

�
FZ(tz) � F̂ �Z(tz)

��
( 
FX(tx)

F̂ �X(tx)

!
exp

 
FX(tx)�F̂ �X(tx)

FX(tx)+F̂ �X(tx)

!)
:(38)

(iv) Putting �1 = 0:5 and �2 = 0:5 in Eq. (32), we get:

F̂ �P (0:5;0:5) =
�
!1F̂ �Y (ty) + !2

�
FX(tx) � F̂ �X(tx)

�
+ !3

�
FZ(tz) � F̂ �Z(tz)

��
8<: FX(tx)

F̂ �X(tx)

!0:5

exp

 
0:5

FX(tx) � F̂ �X(tx)

FX(tx) + F̂ �X(tx)

!9=; :(39)

(v) Putting �1 = 0 and �2 = 1 in Eq. (32), we get:

F̂ �P (0;1) =
�
!1F̂ �Y (ty) + !2

�
FX(tx) � F̂ �X(tx)

�
+ !3

�
FZ(tz) � F̂ �Z(tz)

��
(

exp

 
FX(tx) � F̂ �X(tx)

FX(tx) + F̂ �X(tx)

!)
:

(40)

The biases and minimum MSEs of above es-
timators can be obtained by substituting the
di�erent values �i(i = 1; 2) in Eqs. (34) and (35).
Also, we can generate many more estimators by
substituting the di�erent values of �i and !i(i =
1; 2) in Eq. (32).

4. Comparison of estimators

We compare the proposed generalized class of estima-
tors with some other competing estimators.

(i) By Eqs. (1) and (35), MSE(F̂ �P (�1;�2))min <
V ar(F̂ �0 ) if:�

��200 �
�
l2 + l3 + l4

l1

��
> 0:

(ii) By Eqs. (4) and (35), MSE(F̂ �P (�1;�2))min <
MSE(F̂ �R1

) if:�
f��200 + ��020 � 2��110g �

�
l2 + l3 + l4

l1

��
> 0:

(ii) By Eqs. (7) and (35), MSE(F̂ �P (�1;�2))min <
MSE(F̂ �E1

) if:��
��200 +

��020
4
� ��110

�
�
�
l2 + l3 + l4

l1

��
> 0:

(iii) By Eqs. (9) and (35), MSE(F̂ �P (�1;�2))min <
MSE(F̂ �D1

)min if:�
��200

�
1� ��2110

�� � l2 + l3 + l4
l1

��
> 0

(iv) By Eqs. (12) and (35), MSE(F̂ �P (�1;�2))min <
MSE(F̂ �Rao)min if:"

��200
�
1� ��2110

�
1 + ��200 (1���2110)

�
�
l2 +l3 + l4

l1

�#
> 0:

(v) By Eqs. (15) and (35), MSE(F̂ �P (�1;�2))min <
MSE(F̂ �GS)min if:��

1�AjD
2
j+BjC2

j �2CjDjEj+2BjCj�2DjEj+Bj
(AjBj�E2

j +Bj)

�
�
�
l2 + l3 + l4

l1

��
> 0:

(vi) By Eqs. (18) and (35), MSE(F̂ �P (�1;�2))min <
MSE(F̂ �R2

) if:��
��200 + ��020 + ��002 � 2 (��110 + ��101 � ��011)

�
�
�
l2 + l3 + l4

l1

��
> 0:

(vii) By Eqs. (21) and (35), MSE(F̂ �P (�1;�2))min <
MSE(F̂ �E2

) if:��
��200 +

1
4

(��020+��002)�(��110+��101)+
1
2

��011

�
�
�
l2 + l3 + l4

l1

��
> 0:
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(vii) By Eqs. (23) and (35), MSE(F̂ �P (�1;�2))min <
MSE(F̂ �D2

)min if:�
��200

�
1� ��2110 + ��2101 � 2��110��101��011

1� ��2011

�
�
�
l2 + l3 + l4

l1

��
> 0:

(viii) By Eqs. (26) and (35), MSE(F̂ �P (�1;�2))min <
MSE(F̂ �KU )min if:��

(��200 + ��020 � 2��110)� (��011 � ��101)2

��002

�
�
�
l2 + l3 + l4

l1

��
> 0:

5. Numerical study

We use the following three data sets for numerical
study.

Population 1. Source: Singh [29]
Let Y , X, and Z be the number of immigrants admitted
in the USA during 1996, 1995, and 1994 respectively.
Let I(yi � ty) = 1 for ty = 17702:76 and I(yi >
ty) = 0, otherwise; I(xi � tx) = 1 for tx = 13903:24
and I(xi > tx) = 0, otherwise; I(zi � tz) = 1 for
tz = 15483:67 and I(zi > tz) = 0, otherwise. Last
25% observations i.e., 13 units are considered as non-
responding units. N = 51, n = 20, FY (ty) = 0:8039,
FX(tx) = 0:7647, FZ(tz) = 0:8039, S2

FY (ty)
= 0:1576,

S2
FX(tx)

= 0:1799, S2
FZ(tz)

= 0:1576, N110 = 39, N120 =
02, N210 = 00, N220 = 10, N101 = 40, N102 = 01,
N201 = 01, N202 = 09, N011 = 39, N012 = 00,
N021 = 02, N022 = 10.

For non-response, we have: N (2)
2 = 13, F (2)

Y (ty) =

0:7692, F (2)
X(tx) = 0:6923, F (2)

Z(tz) = 0:7692, S2(2)
FY (ty)

=

0:1775, S2(2)
FX(tx)

= 0:2130, S2(2)
FZ(tz)

= 0:1775, N (2)
110 = 09,

N (2)
120 = 01, N (2)

210 = 00, N (2)
220 = 03, N (2)

101 = 09, N (2)
102 =

01, N (2)
201 = 01, N (2)

202 = 02, N (2)
011 = 09, N (2)

012 = 00,
N (2)

021 = 01, N (2)
022 = 03.

Population 2. Source: Gujarati and Porter [30]

Let Y , X, and, Z be the production of eggs in
USA during 1992, 1991, and 1990 respectively.

Let I(yi � ty) = 1 for ty = 1377:854 and I(yi >
ty) = 0, otherwise; I(xi � tx) = 1 for tx = 75:872
and I(xi > tx) = 0, otherwise; I(zi � tz) = 1 for
tz = 78:276 and I(zi > tz) = 0, otherwise. Last

25% observations i.e., 13 units are considered as non-
responding units. N = 50, n = 18, FY (ty) = 0:6600,
FX(tx) = 0:5800, FZ(tz) = 0:5800, S2

FY (ty)
= 0:2244,

S2
FX(tx)

= 0:2436, S2
FZ(tz)

= 0:2436, N110 = 17, N120 =
16, N210 = 12, N220 = 05, N101 = 17, N102 = 16,
N201 = 12, N202 = 05, N011 = 28, N012 = 01,
N021 = 01, N022 = 20.

For nonresponse, we have: N (2)
2 = 13, F (2)

Y (ty) =

0:7692, F (2)
X(tx) = 0:5385, F (2)

Z(tz) = 0:6154, S2(2)
FY (ty)

=

0:1775, S2(2)
FX(tx)

= 0:2485, S2(2)
FZ(tz)

= 0:2366, N (2)
110 = 04,

N (2)
120 = 06, N (2)

210 = 03, N (2)
220 = 00, N (2)

101 = 05, N (2)
102 =

05, N (2)
201 = 03, N (2)

202 = 00, N (2)
011 = 07, N (2)

012 = 00,
N (2)

021 = 01, N (2)
022 = 05.

Population 3. Source: Singh [29]

Let Y , X, and Z be the estimated number of
�sh caught by marine recreational �sherman by species
group during 1995, 1994, and 1993 respectively.

Let I(yi � ty) = 1 for ty = 4514:90 and I(yi >
ty) = 0, otherwise; I(xi � tx) = 1 for tx = 4954:43
and I(xi > tx) = 0, otherwise; I(zi � tz) = 1 for
tz = 4591:07 and I(zi > tz) = 0, otherwise. Last
25% observations i.e., 17 units are considered as non-
responding units.

N = 69, n = 23, FY (ty) = 0:7246, FX(tx) =
0:7681, FZ(tz) = 0:7391, S2

FY (ty)
= 0:1995, S2

FX(tx)
=

0:1781, S2
FZ(tz)

= 0:1928, N110 = 47, N120 = 03,
N210 = 06, N220 = 13, N101 = 48, N102 = 02,
N201 = 03, N202 = 16, N011 = 49, N012 = 04,
N021 = 02, N022 = 14.

For nonresponse, we have:
N (2)

2 = 17, F (2)
Y (ty) = 0:8824, F (2)

X(tx) = 0:8824, F (2)
Z(tz) =

0:8824, S2(2)
FY (ty)

= 0:1038, S2(2)
FX(tx)

= 0:1038, S2(2)
FZ(tz)

=

0:1038, N (2)
110 = 15, N (2)

120 = 00, N (2)
210 = 00, N (2)

220 = 02,
N (2)

101 = 15, N (2)
102 = 00, N (2)

201 = 00, N (2)
202 = 02, N (2)

011 =
15, N (2)

012 = 00, N (2)
021 = 00, N (2)

022 = 02.
The MSE values of all estimators based on three

populations are given in Tables 7{9.
From Tables 7{9, we observed that the proposed

general class of estimators F̂ �P (�1;�2) is performing
better than all considered estimators at di�erent
choices of K.

6. Conclusion

We proposed a general class of Distribution Func-
tion (DF) estimators F̂ �P (�1;�2) using two auxiliary
variables under non-response in simple random sam-
pling. It is clear from Tables 7{9, that the pro-
posed general class of estimators F̂ �P (�1;�2) for di�er-
ent values of K, is more e�cient as compared to
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Table 7. MSE values of di�erent estimators for di�erent values of K in Population 1.

Estimator K = 1:5 K = 2:0 K = 2:5 K = 3:0 K = 3:5

F̂ �0 0.005922 0.007054 0.008185 0.009316 0.010448

F̂ �R1 0.001744 0.002235 0.002726 0.003217 0.003708

F̂ �E1 0.001947 0.002383 0.002820 0.003256 0.003692

F̂D1 0.001369 0.001742 0.002113 0.002484 0.002853

F̂ �Rao 0.001366 0.001737 0.002106 0.002474 0.002841

F̂ �GS 0.001361 0.001729 0.002095 0.002459 0.002822

F̂ �R2 0.009717 0.012198 0.014679 0.017160 0.019640

F̂ �E2 0.001523 0.002136 0.002749 0.003362 0.003975

F̂ �D2 ; F̂
�
CH ; F̂ �SU 0.001311 0.001726 0.002112 0.002481 0.002840

F̂ �KU 0.001567 0.001935 0.002293 0.002643 0.002983

F̂ �P (0;0) 0.001308 0.001721 0.002105 0.002472 0.002828

F̂ �P (1;0) 0.001308 0.001721 0.002105 0.002472 0.002827

F̂ �P (1;1) 0.001307 0.001722 0.002107 0.002475 0.002832

F̂ �P (0:5;0:5) 0.001304 0.001716 0.002097 0.002461 0.002814

F̂ �P (0;1) 0.001303 0.001713 0.002094 0.002457 0.002809

Table 8. MSE values of di�erent estimators for di�erent values of K in Population 2.

Estimator K = 1:5 K = 2:0 K = 2:5 K = 3:0 K = 3:5

F̂ �0 0.009261 0.010543 0.011825 0.013107 0.014390

F̂ �R1 0.028014 0.033371 0.038728 0.044085 0.049442

F̂ �E1 0.015253 0.017991 0.020730 0.023468 0.026207

F̂D1 0.008759 0.009779 0.010781 0.011772 0.012756

F̂ �Rao 0.008586 0.009564 0.010521 0.011463 0.012393

F̂ �GS 0.008513 0.009468 0.010399 0.011313 0.012212

F̂ �R2 0.070830 0.083730 0.096630 0.109540 0.122440

F̂ �E2 0.027187 0.032177 0.037166 0.042156 0.047146

F̂ �D2 ; F̂
�
CH ; F̂ �SU 0.008754 0.009776 0.010780 0.011772 0.012755

F̂ �KU 0.011939 0.014108 0.016271 0.018429 0.020586

F̂ �P (0;0) 0.008582 0.009562 0.010520 0.011462 0.012392

F̂ �P (1;1) 0.008576 0.009554 0.010509 0.011447 0.012373

F̂ �P (1;0) 0.008721 0.009740 0.010740 0.011729 0.012709

F̂ �P (0:5;0:5) 0.008525 0.009488 0.010425 0.011345 0.012251

F̂ �P (0;1) 0.008509 0.009488 0.010425 0.011345 0.012251
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Table 9. MSE values of di�erent estimators for di�erent values of K in Population 3.

Estimator K = 1:5 K = 2:0 K = 2:5 K = 3:0 K = 3:5
F̂ �0 0.006340 0.006896 0.007451 0.008007 0.008563
F̂ �R1 0.003569 0.003570 0.003572 0.003573 0.003574
F̂ �E1 0.003682 0.003837 0.003992 0.004147 0.004302
F̂D1 0.003305 0.003342 0.003373 0.003399 0.003421
F̂ �Rao 0.003284 0.003321 0.003351 0.003377 0.003399
F̂ �GS 0.003275 0.003311 0.003340 0.003365 0.003386
F̂ �R2 0.007953 0.008426 0.008900 0.009374 0.009848
F̂ �E2 0.002231 0.002232 0.002232 0.002233 0.002233

F̂ �D2 ; F̂
�
CH ; F̂ �SU 0.001928 0.001936 0.001943 0.001949 0.001954
F̂ �KU 0.003471 0.003473 0.003474 0.003476 0.003477
F̂ �P (0;0) 0.001921 0.001929 0.001936 0.001942 0.001947
F̂ �P (1;1) 0.001921 0.001919 0.001936 0.001942 0.001947
F̂ �P (1;0) 0.001928 0.001936 0.001943 0.001949 0.001953
F̂ �P (0:5;0:5) 0.001917 0.001925 0.001931 0.001937 0.001941
F̂ �P (0;1) 0.001916 0.001923 0.001929 0.001935 0.001939

the estimators F̂ �i (i = 0; R1; E1; D1,Rao;GS;R2; E2,
(D2; Ch; SU),KU) when non-response exists on all the
study variable (Y ) and the auxiliary variables (X,Z).
It is also observed that the Mean Square Error (MSE)
values of all estimators increase with increase in the
values ofK from 1.5 to 3.5 in all Populations 1{3, which
are expected results. The ratio estimator F̂ �R2

shows
poor performance in Tables 7 and 9 but in Table 8, the
ratio, exponential-ratio and Kumar et al. [7] estimators
i.e. F̂ �i (i = R1, R2, E1, E2, K) perform poorly
as compared to all other estimators. The di�erence
estimator (F̂ �D2

), Chami et al. [27] estimator (F̂ �Ch) and
Singh and Usman [28] estimator (F̂ �SU ) give the same
Mean Square Error (MSE) values. Among proposed
general class of estimators F̂P (�1 , �2)�, the performance
of the estimator F̂ �P (0;1) is the best in terms of MSE.
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