Toward sustainability in designing an agricultural supply chain network: A case study on palm date

Document Type : Article

Authors

1 Department of Industrial Engineering, Tehran Central Branch, Islamic Azad University, Tehran, Iran

2 Department of Industrial Engineering, Nowshahr Branch, Islamic Azad University, Nowshahr, Iran

3 School of Industrial Engineering, College of Engineering, University of Tehran, Tehran, Iran

4 Tecnologico de Monterrey, Escuela de Ingenieraiy Ciencias, Puebla, Mexico

Abstract

Nowadays, the agricultural and food supply chains have attracted both academia and industrial practitioners. This paper first considers the characteristics of the date product as one of the most well-known and rich fruits to design and address its supply chain design. Special characteristics in date products have made the design of the supply chain to be unique. Therefore, considering different customers along with the specific product flow is another contribution of this paper. Reportedly, there is no work on this topic. Several old and recent meta-heuristic algorithms are utilized in multi-objective meta-heuristics to reach better intensification and diversification trade-offs. By the Taguchi design experiment method, appropriate parameter values of the proposed algorithms are chosen. Besides, the solution quality is investigated by approaches including the relative percentage deviation (RPD) and the CPU time and the weighted LP-metric method. The results showed that a multi-objective Keshtel algorithm (MOKA) is more efficient and consistently outperforms other utilized algorithms.

Keywords


References:
1. Hosseini, S.M., Paydar, M.M., and Hajiaghaei- Keshteli, M. "Recovery solutions for ecotourism centers during the Covid-19 pandemic: Utilizing Fuzzy DEMATEL and Fuzzy VIKOR methods", Expert Systems with Applications, 185, p. 115594 (2021). DOI: 10.1016/j.eswa.2021.115594.
2. van Berlo, J.M. "A decision support tool for the vegetable processing industry; an integrative approach of market, industry and agriculture", Agricultural Systems, 43(1), pp. 91-109 (1993). DOI: 10.1016/0308- 521X(93)90094-I.
3. Jolayemi, J.K. "An integrated model for planning and managing multi-regional mixed-crop farming schemes", Ecological Modelling, 84(1-3), pp. 63-74 (1996). DOI: 10.1016/0304-3800(94)00146-4.
4. Allen, S.J. and Schuster, E.W. "Controlling the risk for an agricultural harvest", Manufacturing and Service Operations Management, 6(3), pp. 225-236 (2004). DOI: 10.1287/msom.1040.0035.
5. Rantala, J. "Optimizing the supply chain strategy of a multi-unit finnish nursery company", Silva Fennica, 38(2), pp. 203-215 (2004). DOI: 10.14214/sf.429.
6. Apaiah, R.K. and Hendrix, E.M. "Design of a supply chain network for pea-based novel protein foods", Journal of Food Engineering, 70(3), pp. 383-391 (2005). DOI: 10.1016/j.jfoodeng.2004.02.043.
7. Ferrer, J.C., Mac Cawley, A., Maturana, S., et al. "An optimization approach for scheduling wine grape harvest operations", International Journal of Production Economics, 112(2), pp. 985-999 (2008). DOI: 10.1016/j.ijpe.2007.05.020.
8. Manzini, R. and Gebennini, E. "Optimization models for the dynamic facility location and allocation problem", International Journal of Production Research, 46(8), pp. 2061-2086 (2008). DOI: 10.1080/00207540600847418.
9. Ahumada, O. and Villalobos, J.R. "A tactical model for planning the production and distribution of fresh produce", Annals of Operations Research, 190(1), pp. 339-358 (2011). DOI: 10.1007/s10479-009-0614-4.
10. Ahumada, O., Villalobos, J.R., and Mason, A.N. "Tactical planning of the production and distribution of fresh agricultural products under uncertainty", Agricultural Systems, 112, pp. 17-26 (2012).
11. Navazi, F., Sazvar, Z., and Tavakkoli-Moghaddam, R. "A sustainable closed-loop location-routinginventory problem for perishable products", Scientia Iranica, 30(2), pp. 757-783 (2023). DOI: 10.24200/sci.2021.55642.4353.
12. Hajikhani, A., Khalilzadeh, M., and Sadjadi, S.J. "A fuzzy multi-objective multi-product supplier selection and order allocation problem in supply chain under coverage and price considerations: An urban agricultural case study", Scientia Iranica, 25(1), pp. 431-449 (2018). DOI: 10.24200/sci.2017.4409.
13. Kazemi, M.J., Paydar, M.M., and Safaei, A.S. "Designing a bi-objective rice supply chain considering environmental impacts under uncertainty", Scientia Iranica, 30(1), pp. 336-355 (2023). DOI: 10.24200/sci.2021.55935.4481.
14. Ahumada, O. and Villalobos, J.R. "Operational model for planning the harvest and distribution of perishable agricultural products", International Journal of Production Economics, 133(2), pp. 677-687 (2011). DOI: 10.1016/j.ijpe.2011.05.015.
15. Rong, A., Akkerman, R., and Grunow, M. "An optimization approach for managing fresh food quality throughout the supply chain", International Journal of Production Economics, 131(1), pp. 421-429 (2011). DOI: 10.1016/j.ijpe.2009.11.026.
16. Teimoury, E., Nedaei, H., Ansari, S., et al. "A multiobjective analysis for import quota policy making in a perishable fruit and vegetable supply chain: A system dynamics approach", Computers and Electronics in Agriculture, 93, pp. 37-45 (2013). DOI: 10.1016/j.compag.2013.01.010.
17. Ahumada, O. and Villalobos, J.R. "Application of planning models in the agri-food supply chain: A review", European Journal of Operational Research, 196(1), pp. 1-20 (2009). DOI: 10.1016/j.ejor.2008.02.014.
18. Soto-Silva, W.E., Nadal-Roig, E., Gonzalez-Araya, M.C., et al. "Operational research models applied to the fresh fruit supply chain", European Journal of Operational Research, 251(2), pp. 345-355 (2016). DOI: 10.1016/j.ejor.2015.08.046.
19. Nadal-Roig, E. and Pla-Aragones, L.M. "Optimal transport planning for the supply to a fruit logistic centre", In Handbook of Operations Research in Agriculture and the Agri-Food Industry, pp. 163-177, Springer, New York, NY (2015). DOI: 10.1007/978-1- 4939-2483-7 7.
20. Etemadnia, H., Goetz, S.J., Canning, P., et al. "Optimal wholesale facilities location within the fruit and vegetables supply chain with bimodal transportation options: An LP-MIP heuristic approach", European Journal of Operational Research, 244(2), pp. 648-661 (2015). DOI: 10.1016/j.ejor.2015.01.044.
21. Madoumier, M., Trystram, G., Sebastian, P., et al. "Towards a holistic approach for multi-objective optimization of food processes: A critical review", Trends in Food Science and Technology, 86, pp. 1-15 (2019). DOI: 10.1016/j.tifs.2019.02.002.
22. Sarker, R. and Ray, T. "An improved evolutionary algorithm for solving multi-objective crop planning models", Computers and Electronics in Agriculture, 68(2), pp. 191-199 (2009). DOI: 10.1016/j.compag.2009.06.002.
23. Paksoy, T., Ozceylan, E., and Weber, G.W. "A multi objective model for optimization of a green supply chain network", In AIP Conference Proceedings, 1239(1), pp. 311-320, American Institute of Physics (2010). DOI: 10.1063/1.3459765.
24. Dehghanian, F. and Mansour, S. "Designing sustainable recovery network of end-of-life products using genetic algorithm", Resources, Conservation and Recycling, 53(10), pp. 559-570 (2009). DOI: 10.1016/j.resconrec.2009.04.007.
25. Jabarzadeh, Y., Reyhani Yamchi, H., and Ghaffarinasab, N. "A Multi-objective mathematical model for managing sustainable direct and reverse supply chain of apple considering foreign markets", Journal of International Business Administration, 3(1), pp. 139- 166 (2020). DOI: 10.22034/jiba.2020.10384.
26. Fleischmann, M., Bloemhof-Ruwaard, J.M., Dekker, R., et al. "Quantitative models for reverse logistics: A review", European Journal of Operational Research, 103(1), pp. 1-17 (1997). DOI: 10.1016/S0377- 2217(97)00230-0.
27. Stock, J.R. and Mulki, J.P. "Product returns processing: an examination of practices of manufacturers, wholesalers/distributors, and retailers", Journal of Business Logistics, 30(1), pp. 33-62 (2009). DOI: 10.1002/j.2158-1592.2009.tb00098.x.
28. Zhang, Y., Chu, F., Che, A., et al. "Novel model and kernel search heuristic for multi-period closedloop food supply chain planning with returnable transport items", International Journal of Production Research, 57(23), pp. 7439-7456 (2019). DOI: 10.1080/00207543.2019.1615650.
29. Banasik, A., Kanellopoulos, A., Claassen, G.D.H., et al. "Closing loops in agricultural supply chains using multi-objective optimization: A case study of an industrial mushroom supply chain", International Journal of Production Economics, 183, pp. 409-420 (2017). DOI: 10.1016/j.ijpe.2016.08.012.
30. Cheraghalipour, A., Paydar, M.M., and Hajiaghaei-Keshteli, M. "A bi-objective optimization for citrus closed-loop supply chain using Pareto-based algorithms", Applied Soft Computing, 69, pp. 33-59 (2018). DOI: 10.1016/j.asoc.2018.04.022.
31. Azaron, A., Venkatadri, U., and Farhang Doost, A. "Designing profitable and responsive supply chains under uncertainty", International Journal of Production Research, 59(1), pp. 213-225 (2021). DOI: 10.1080/00207543.2020.1785036.
32. Gobel, C., Langen, N., Blumenthal, A., et al. "Cutting food waste through cooperation along the food supply chain", Sustainability, 7(2), pp. 1429-1445 (2015). DOI: 10.3390/su7021429. 
33. Jabarzadeh, Y., Yamchi, H.R., Kumar, V., et al. "A multi-objective mixed-integer linear model for sustainable fruit closed-loop supply chain network", Management of Environmental Quality: An International Journal, 31(5), pp. 1351-1373 (2020). DOI: 10.1108/MEQ-12-2019-0276.
34. Salehi-Amiri, A., Zahedi, A., Akbapour, N., et al. "Designing a sustainable closed-loop supply chain network for walnut industry", Renewable and Sustainable Energy Reviews, 141, p. 110821 (2021). DOI: 10.1016/j.rser.2021.110821.
35. Chouhan, V.K., Khan, S.H., and Hajiaghaei-Keshteli, M. "Metaheuristic approaches to design and address multi-echelon sugarcane closed-loop supply chain network", Soft Computing, 25(16), pp. 11377-11404 (2021). DOI: 10.1007/s00500-021-05943-7.
36. Peters, C.J., Fick, G.W., and Wilkins, J.L. "Cultivating better nutrition: can the food pyramid help translate dietary recommendations into agricultural goals?", Agronomy Journal, 95(6), pp. 1424-1431 (2003). DOI: 10.2134/agronj2003.1424.
37. Alotaibi, M.D., Alshammari, B.A., Saba, N., et al. "Characterization of natural fiber obtained from different parts of date palm tree (Phoenix dactylifera L.)", International Journal of Biological Macromolecules, 135, pp. 69-76 (2019). DOI: 10.1016/j.ijbiomac.2019.05.102.
38. Hanieh, A.A., Hasan, A., and Assi, M. "Date palm trees supply chain and sustainable model", Journal of Cleaner Production, 258, p. 120951 (2020). DOI: 10.1016/j.jclepro.2020.120951.
39. Alawar, A., Hamed, A.M., and Al-Kaabi, K. "Characterization of treated date palm tree fiber as composite reinforcement", Composites Part B: Engineering, 40(7), pp. 601-606 (2009). DOI: 10.1016/j.compositesb.2009.04.018.
40. Schultz, R., Stougie, L., and Van Der Vlerk, M.H. "Two-stage stochastic integer programming: A survey", Statistica Neerlandica, 50(3), pp. 404-416 (1996). DOI: 10.1111/j.1467-9574.1996.tb01506.x.
41. Shapiro, A. and Philpott, A. "A tutorial on stochastic programming", Manuscript, Available at www2.isye.gatech.edu/ashapiro/publications.html, 17 (2007).
42. Shah, P.J., Anagnostopoulos, T., Zaslavsky, A., et al. "A stochastic optimization framework for planning of waste collection and value recovery operations in smart and sustainable cities", Waste Management, 78, pp. 104-114 (2018). DOI: 10.1016/j.wasman.2018.05.019.
43. Zahiri, B., Torabi, S.A., Mohammadi, M., et al. "A multi-stage stochastic programming approach for blood supply chain planning", Computers and Industrial Engineering, 122, pp. 1-14 (2018). DOI: 10.1016/j.cie.2018.05.041.
44. Zhou, Z., Zhang, J., Liu, P., et al. "A twostage stochastic programming model for the optimal design of distributed energy systems", Applied Energy, 103, pp. 135-144 (2013). DOI: 10.1016/j.apenergy.2012.09.019.
45. Heyman, D.P. and Sobel, M.J. "Stochastic models in operations research: stochastic optimization", 2, Courier Corporation, Devor Publications, Inc., Mineola, New Yourk (2004).
46. Ringuest, J.L. "Lp-metric sensitivity analysis for single and multi-attribute decision analysis", European Journal of Operational Research, 98(3), pp. 563-570 (1997). DOI: 10.1016/S0377-2217(96)00177-4.
47. Cheraghalipour, A., Paydar, M.M., and Hajiaghaei- Keshteli, M. "Applying a hybrid BWM-VIKOR approach to supplier selection: A case study in the Iranian agricultural implements industry", International Journal of Applied Decision Sciences, 11(3), pp. 274- 301 (2018). DOI: 10.1504/IJADS.2018.10010871.
48. Abdi, A., Abdi, A., Akbarpour, N., et al. "Innovative approaches to design and address green supply chain network with simultaneous pick-up and split delivery", Journal of Cleaner Production, 250, p. 119437 (2020). DOI: 10.1016/j.jclepro.2019.119437.
49. Abdi, A., Abdi, A., Fathollahi-Fard, A.M., et al. "A set of calibrated metaheuristics to address a closedloop supply chain network design problem under uncertainty", International Journal of Systems Science: Operations and Logistics, 8(1), pp. 23-40 (2021). DOI: 10.1080/23302674.2019.1610197.
50. Amiri, S.A.H.S., Zahedi, A., Kazemi, M., et al. "Determination of the optimal sales level of perishable goods in a two-echelon supply chain network", Computers and Industrial Engineering, 139, p. 106156 (2020). DOI: 10.1016/j.cie.2019.106156.
51. Michalewicz, Z., Vignaux, G.A., and Hobbs, M. "A nonstandard genetic algorithm for the nonlinear transportation problem", ORSA Journal on Computing, 3(4), pp. 307-316 (1991). DOI: 10.1287/ijoc.3.4.307.
52. Prufer, H. "Neuer beweis eines satzes uber permutationen", Arch. Math. Phys, 27(1918), pp. 742-744 (1918). 
53. Gen, M., Altiparmak, F., and Lin, L. "A genetic algorithm for two-stage transportation problem using priority-based encoding", OR Spectrum, 28(3), pp. 337-354 (2006). DOI: 10.1007/s00291-005-0029-9.
54. Hajiaghaei-Keshteli, M. and Aminnayeri, M. "Solving the integrated scheduling of production and rail transportation problem by Keshtel algorithm", Applied Soft Computing, 25, pp. 184-203 (2014). DOI: 10.1016/j.asoc.2014.09.034.
55. Mosallanezhad, B., Chouhan, V.K., Paydar, M.M., et al. "Disaster relief supply chain design for personal protection equipment during the COVID-19 pandemic", Applied Soft Computing, 112, p. 107809 (2021). DOI: 10.1016/j.asoc.2021.107809.
56. Kirkpatrick, S., Gelatt, C.D., and Vecchi, M.P. "Optimization by simulated annealing", Science, 220(4598), pp. 671-680 (1983). DOI: 10.1126/science. 220.4598.671.
57. Akbarpour, N., Hajiaghaei-Keshteli, M., and Tavakkoli-Moghaddam, R. "New approaches in meta-heuristics to schedule purposeful inspections of workshops in manufacturing supply chains", International Journal of Engineering, 33(5), pp. 833-840 (2020). DOI: 10.5829/ije.2020.33.05a.15.
58. Hajipour, V., Mehdizadeh, E., and Tavakkoli- Moghaddam, R. "A novel Pareto-based multi-objective vibration damping optimization algorithm to solve multi-objective optimization problems", Scientia Iranica, Transaction E, Industrial Engineering, 21(6), p. 2368 (2014). 
59. Al Jadaan, O., Rajamani, L., and Rao, C.R. "Nondominated ranked genetic algorithm for solving multiobjective optimization problems: NRGA", Journal of Theoretical and Applied Information Technology, 4(1), pp. 60-68 (2008). 
60. Deb, K., Pratap, A., Agarwal, S., et al. "A fast and elitist multiobjective genetic algorithm: NSGAII", IEEE Transactions on Evolutionary Computation, 6(2), pp. 182-197 (2002). DOI: 10.1109/4235.996017.
61. Babashahi, M., Shahanaghi, K., Gholamian, M.R., et al. "A bi-objective hierarchical hub location model  with facility failure", Scientia Iranica, 27(4), pp. 2009- 2020 (2020). DOI: 10.24200/sci.2018.5358.1229.
62. Fathollahi-Fard, A.M., Hajiaghaei-Keshteli, M., Tavakkoli-Moghaddam, R., et al. "Bi-level  programming for home health care supply chain considering outsourcing", Journal of Industrial Information Integration, 25, Art. No. 100246 (2022). DOI: 10.1016/j.jii.2021.100246.
63. Sahebjamnia, N., Goodarzian, F., and Hajiaghaei- Keshteli, M. "Optimization of multi-period threeechelon citrus supply chain problem", Journal of Optimization in Industrial Engineering, 13(1), pp. 39-53 (2020). DOI: 10.22094/JOIE.2017.728.1463.
64. Bahadori-Chinibelagh, S., Fathollahi-Fard, A.M., and Hajiaghaei-Keshteli, M. "Two constructive algorithms to address a multi-depot home healthcare routing problem", IETE Journal of Research, 68, pp. 1108- 1114 (2022). DOI: 10.1080/03772063.2019.1642802.
65. Taguchi, G. "Introduction to quality engineering: designing quality into products and processes", Asian Productivity Organization, Tokyo (1986).
66. Cheraghalipour, A., Paydar, M.M., and Hajiaghaei- Keshteli, M. "Designing and solving a bi-level model for rice supply chain using the evolutionary algorithms", Computers and Electronics in Agriculture, 162, pp. 651-668 (2019). DOI: 10.1016/j.compag.2019.04.041.
67. Cheraghalipour, A., Paydar, M.M., and Hajiaghaei- Keshteli, M. "An integrated approach for collection center selection in reverse logistics", International Journal of Engineering, 30(7), pp. 1005-1016 (2017). DOI: 10.5829/ije.2017.30.07a.10.
68. Gholian-Jouybari, F., Afshari, A.J., and Paydar, M.M. "Utilizing new approaches to address the fuzzy fixed charge transportation problem", Journal of Industrial and Production Engineering, 35(3), pp. 148-159 (2018). DOI: 10.1080/21681015.2018.1437791.
69. Gholian Jouybari, F., Afshari, A.J., and Paydar, M.M. "Electromagnetism-like algorithms for the fuzzy fixed charge transportation problem", Journal of Industrial Engineering and Management Studies, 3(1), pp. 39-60 (2016). DOI: 20.1001.1.2476308.2016.3.1.3.1.
70. Akbarpour, N., Salehi-Amiri, A., Hajiaghaei-Keshteli, M., et al. "An innovative waste management system in a smart city under stochastic optimization using vehicle routing problem", Soft Computing, 25(8), pp. 6707-6727 (2021). DOI: 10.1007/s00500-021-05669-6.
71. Zahedi, A., Salehi-Amiri, A., Smith, N.R., et al. "Utilizing IoT to design a relief supply chain network for the SARS-COV-2 pandemic", Applied Soft Computing, 104, p. 107210 (2021). DOI: 10.1016/j.asoc.2021.107210.
72. Zahedi, A., Salehi-Amiri, A., Hajiaghaei-Keshteli, M., et al. "Designing a closed-loop supply chain network considering multi-task sales agencies and multi-mode transportation", Soft Computing, 25(8), pp. 6203- 6235 (2021). DOI: 10.1007/s00500-021-05607-6.
73. Maghsoudlou, H., Kahag, M.R., Niaki, S.T.A., et al. "Bi-objective optimization of a three-echelon multi-server supply-chain problem in congested systems: Modeling and solution", Computers and Industrial Engineering, 99, pp. 41-62 (2016). DOI: 10.1016/j.cie.2016.07.008.
74. Rahmati, S.H.A., Hajipour, V., and Niaki, S.T.A. "A soft-computing Pareto-based meta-heuristic algorithm for a multi-objective multi-server facility location problem", Applied Soft Computing, 13(4), pp. 1728-1740 (2013). DOI: 10.1016/j.asoc.2012.12.016.
75. Karimi, N., Zandieh, M., and Karamooz, H.R. "Biobjective group scheduling in hybrid  flexible  flowshop: a multi-phase approach", Expert Systems with Applications, 37(6), pp. 4024-4032 (2010). DOI: 10.1016/j.eswa.2009.09.005.
76. Mousavi, R., Salehi-Amiri, A., Zahedi, A., et al. "Designing a supply chain network for blood decomposition by utilizing social and environmental factor", Computers and Industrial Engineering, 160, p. 107501 (2021). DOI: 10.1016/j.cie.2021.107501.
77. Kazemi, M., Asef-Vaziri, A., Shojaei, T., et al. "A math-heuristic algorithm for concurrent assignment and sequence scheduling in multi-shuttle shared location automated storage and retrieval systems", Journal of Supply Chain and Operations Management, 19(1), pp. 1-20 (2021).