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Abstract. Nowadays, the agricultural and food supply chains have attracted both
academia and industrial practitioners. This paper �rst considers the characteristics of the
date product as one of the most well-known and rich fruits to design and address its supply
chain design. Special characteristics in date products have made the supply chain design to
be unique. Therefore, considering di�erent customers along with the speci�c product 
ow
is another contribution of this paper. Reportedly, there is no work on this topic. Several
old and recent meta-heuristic algorithms are utilized in multi-objective meta-heuristics to
reach better intensi�cation and diversi�cation trade-o�s. By the Taguchi design experiment
method, appropriate parameter values of the proposed algorithms are chosen. Besides, the
solution quality is investigated by approaches including the Relative Percentage Deviation
(RPD), CPU time, and weighted LP-metric method. The results showed that a Multi-
Objective Keshtel Algorithm (MOKA) is more e�cient and consistently outperforms other
utilized algorithms.
© 2024 Sharif University of Technology. All rights reserved.

1. Introduction

Recent developments in the Supply Chain Network
Design (SCND) have led many companies and their
users in public and private sectors to implement its
settings in their industries to achieve the most added
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values out of a speci�c type of product. While many of
them utilized the SCND to address their company's
mission and vision, others tried to consider design-
ing networks according to reducing costs, considering
sustainability aspects, covering the ignored parts of
di�erent products, servicing customers, and enhancing
the overall e�ciency chains [1]. In this regard, com-
panies avert their attention toward sustainable design.
Agricultural products are among the most important
products in production for society and addressing the
potential market demand. However, far less attention
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has been devoted to designing an e�ective network for
such products.

Previous studies only suggest minor contributions
for these types of products, and hence the utilized
supply chain networks often failed to introduce an
e�cient network for them. In addition, considering
sustainability is mainly ignored, and therefore the
proposed supply chain network could not �nd its
optimized e�ciency. van Berlo [2] presented a sup-
ply chain operations of vegetable processing. Their
model incorporates farmer decisions to reduce supply
chain costs and lacks location decisions. Jolayemi [3]
considered a speci�c planting period and location of
agricultural products to maximize pro�t. The model
selects the most pro�table product among a large
number of products. In addition, the author tried to
determine the amount of increase or decrease in pro�t
from co-cultivation of any number of crops compared
to their cultivation.

Allen and Schuster [4] reduced the amount
of waste in agricultural production and focused
on harvesting and storage capacities. Rantala [5]
developed a model for seedlings and transportation
and considered capacity constraints and product
perishability, in addition to minimizing the costs and
meeting customer demands. Designing a pea-based
protein food SC network was considered by Apaiah
and Hendrix [6]. The authors presented a supply
chain model to reduce the costs considering chain
equilibrium constraints, the capacity of each plant,
and the di�erent modes of transport.

Ferrer et al. [7] proposed a model for harvest-
ing, transporting, and packaging crops. Manzini and
Gebennini [8] designed a real-world model by adding
time delay constraints at di�erent distribution stages.
In addition, by adding these constraints. Ahumada
and Villalobos [9] and Ahumada et al. [10] planned
to grow tomatoes and red peppers in the state of
Sinaloa (northeastern Mexico) on farms with di�erent
locations, with employment constraints, holding and
harvesting criteria, as well as water consumption. The
proposed model evaluates these factors in two de�nite
and uncertain conditions. Navazi et al. [11] designed
a Closed-Loop Supply Chain (CLSC) for perishable
products concerning recycling level in the reverse 
ow.
The results of the problem showed enhancement in the
environmental e�ect of waste reduction. Hajikhani
et al. [12] designed a new plan to select the best
supplier within a real agricultural case study. Using
multi-objective functions, the results of using multiple
metaheuristic algorithms revealed that the proposed
algorithm applies to real-world problems. Kazemi et
al. [13] designed an agricultural supply chain for rice
products. Two objectives are presented to reduce
total costs and also reduce soil erosion. Considering

various scenarios, the results of the study showed
improvements to the considered objectives.

Ahumada and Villalobos [14] worked quality and
price of products based on the value of products, labor
costs, and transportation modes. They developed
an Mixed-Integer Programming (MIP) model in a
limited time (several weeks). The most important
feature of their problem is to consider several farms
in speci�c places. In this model, the quality of the
product decreases during the shipping and delay
stages. This model aims to maximize the farmer's
income according to the quality of the products. In
their model, the type and time range of cultivation
is speci�ed. Rong et al. [15] provided an optimization
model about perishable products and focused mainly
on maintaining the quality of products. In this
model, the quality of agricultural products is reduced
according to the temperature and storage time at each
stage and product transfer conditions. This paper
is to minimize overall SC costs while maintaining
acceptable product quality. Teimoury et al. [16]
considered the same chain in this area and probed the
e�ect of supply, demand, and price.

Few studies have been conducted to address the
reverse logistics issues of fresh fruits. Ahumada and
Villalobos [17] worked on the perishability of agri-
cultural products and vegetables as one of the �rst
studies. Later, a mathematical model was presented
for the same chain by Soto-Silva et al. [18] to optimize
fruit freshness. A transportation planning model was
provided to set some storage in the non-harvest season
by Nadal-Roig and Pl�a-Aragon�es [19]. Etemadnia et
al. [20] also found the optimal locations of the wholesale
facilities for the same chain.

Several works in this area have focused on multi-
objective optimization approaches, aiming to make a
trade-o� between several con
icting goals [21]. For
instance, Sarker and Ray [22] utilized the Epsilon-
constraint and multi-objective optimization algorithms
to address their multi-objective optimization model.
Besides, most of the papers in this area mainly focused
on price and demand. Paksoy et al. [23] minimized car-
bon dioxide emissions in forward logistics and supply
chain costs in reverse logistics.

Recently, such concepts have been replaced by
sustainability in this supply chain. Dehghanian and
Mansour [24] measured responsibilities to examine so-
cial e�ects and the pro�t objective function to examine
economic e�ects.

Recently, waste recovery and management were
among the main suppositions in this area [25]. By
considering reverse logistics, we consider all activities
from the end to the beginning of a chain to re-use and
reproduce that product or its variations [26]. Using
reverse logistics can have more and better competitive
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advantages [27]. Also, a few works consider waste to
design closed-loop chains in the literature [28].

Banasik et al. [29] �rstly considered industrial
mushrooms and developed a CLSC by the MILP,
considering the economic and environmental aspects.
Cheraghalipour et al. [30] considered citrus in their
CLSC to minimize costs and maximize customer de-
mand in both 
ows.

Supply chain responsiveness is also one of the key
factors in such chains [31]. By growing population, day
to day, researchers and the corresponding organizations
know the importance of designing such chains in an
optimized fashion better. According to Food and
Agriculture Organization (FAO) in 2020, about 30% of
global food production would be wasted. Consequently,
the production resources waste, such as fuels, water,
fertilizers matter, and cause negative e�ects [32]. In
a nutshell, environmental aspects, strict regulations on
waste, reverse logistics, and CLSC design are the major
concerns in designing supply chain networks in this
area. However, the only limited study addressed such
issues for fruit and agricultural products. Jabarzadeh
et al. [33] utilized concepts of reverse logistics for
fruit supply chains. In their model, they minimized
both costs and carbon dioxide emissions. Recently,
Salehi-Amiri et al. [34] designed a CLSC network to
minimize the total 
ow cost in both directions. They
�rstly considered walnut characteristics to model their
network. Chouhan et al. [35] designed a multi-echelon
sugarcane CLSC network. They addressed the model
by recent metaheuristic algorithms.

One of the main products using its fruit and sub-
products with high value in the nutrition pyramid is
the date [36]. Date palm tree includes various sub-
products, including date honey and date pedicles. In
addition, various markets can use the date for their
direct and indirect use [37]. In its direct use, the date
is usually sent to the packaging center and then for
general markets, which most of this product usage [38].
Indirect usage includes the processing date, seedling,
pedicles, leaves, etc., to use in other markets such as
the medical sector, animal food, etc. [39]. However,
considering these settings for date palm trees as by-
products has not been conducted before. Therefore,
the remainder of this valuable product that can be re-
used in the reverse 
ow is usually ignored. Considering
the sustainability of the date palm tree can signi�cantly
increase its added value. Figure 1 shows the stance date
among all dried fruit production worldwide.

Therefore, in this study, the application of sus-
tainable logistics for date products is taken into ac-
count. In this chain, the date and its sub-products
are sent to various markets. Date products would
send to di�erent markets in the forward 
ow. Also,
an environmental factor of such a program is taken
into account. Two objective functions of costs and

Figure 1. Production of di�erent dried fruits in 2019 and
2020 (in 1,000 metric tons).

air pollution are applied for simultaneous economic
and environmental consideration of the problem. A
set of new multi-objective metaheuristic algorithms are
utilized in this work.

As a result, the following are our primary goals
and contributions in the literature:

� Reportedly, no same work exists on the issue above
in this area, using palm date to design a sustainable
network;

� In addition, the current study created unique math-
ematical modeling based on its characteristics, while
the majority of prior studies indicated similar logis-
tic networks;

� Due to its unique network, this study provides a new
MILP model from a mathematical standpoint;

� To address the model, a new metaheuristic and
hybrid technique are used.

The following sections are sorted as explained below.
Section 2 entails the problem de�nition and shows the
structure of the proposed SCND for the date industry.
Section 3 details the solution approach, including
the Taguchi method, various proposed multi-objective
metaheuristic algorithms, and exempli�ed parameter
tuning. The results and their analyses are explained
in Section 4, and Section 5 entails the conclusions and
managerial insight.

2. Problem de�nition

This study is an optimization modeling for a forward
date supply chain network, which embraces date palms,
collection and distribution centers (DCs), date facto-
ries, customers, and by-product factories. As shown in
Figure 2, the date product is collected from farmlands
in the �rst level of the network. In the proposed
network, the single-period chain is assumed. So, date
product 
ow to collection and DC continues. After
that, a percentage of products ships to date factories
and market. Lastly, Waste date products are also
gathered and transported to by-product factories.
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Figure 2. Proposed date supply chain network.

2.1. Proposed model
Here, we aim to develop our model based on the
assumptions mentioned above. The notations of the
presented model are shown in Table 1.

The details of the MILP model are as follows:

Min Z1 =
IX
i=1

fiUi +
KX
k=1

fkWk +
MX
m=1

fmBm

+
IX
i=1

JX
j=1

CijXij +
JX
j=1

KX
k=1

CjkGjk

+
KX
k=1

LX
l=1

CklSkl +
KX
k=1

MX
m=1

CkmEkm

+
IX
i=1

NX
n=1

CimRim; (1)

Min Z2 =

 
IX
i=1

Ui +
KX
k=1

fk +
MX
m=1

fm

!
� EM; (2)

s.t.:

(1� vi)� �i � Ui =
JX
j=1

Xij 8i 2 I; (3)

JX
j=1

Yj � 1; (4)

IX
i=1

Xij � �j 8j 2 J; (5)

KX
k=1

Gjk �
IX
i=1

Xij 8j 2 J; (6)

KX
k=1

Wk � 1; (7)

JX
j=1

Gjk � �k � wk 8k 2 K; (8)

KX
k=1

Stkl = Dl 8l 2 L; (9)

MX
m=1

Bm � 1; (10)

IX
i=1

Rim +
KX
k=1

Ekm � �m �Bm 8m 2M; (11)

IX
i=1

Rim � �i � vi 8m 2M; (12)

KX
k=1

Ekm = �m � �k 8m 2M; (13)

Ui;Wk;Bm2f0; 1g 8i 2 I; 8k 2 K; 8m 2M; (14)

Xij ;Gjk; Skl; Ekm; Rim � 0

8i 2 I; 8j 2 J; 8k 2 K; 8l 2 L; 8m 2M: (15)

According to the objective function (1), the objective
function for the date supply chain network is provided.
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Table 1. Notations of the presented model.

Indices

i Index of date farmland (i = 1; 2; :::; I)

j Index of collection and distribution center (j = 1; 2; :::; J)

k Index of date factory (k = 1; 2; :::;K)

l Index of customer (l = 1; 2; :::; L)

m Index of by-product factory (m = 1; 2; :::;M)

Parameters

fi Fixed costs of opening date farmland i

fk Fixed costs of opening date factory k

fm Fixed costs of opening to by-product factory m

Cij Processing and transportation cost from farmland i to collection and distribution center j

Cjk Processing and transportation cost from collection and distribution center j to date factory k

Ckl Processing and transportation cost from date factory k to customers l

Cim Processing and transportation cost from farmland i to by-factory m

Ckm Processing and transportation cost from date factory k to by-factory m

Dl Demand of date by costumer l

�i Production capacity of farmland i

�j Capacity of collection and distribution center j

�k Production capacity of date factory k

�m Production capacity of by-product factory m

vi Waste rate by date farmland i

�k Waste rate by date factory k

EM Total amount of CO2 emission

Decision variables

Xij Transported quantity of product from farmland i to collection and distribution center j

Gjk Transported quantity of product from collection and distribution center j to date factory k

Skl Transported quantity of product from date factory k to customer l

Ekm Transported quantity of product from date factory k to by-product factory m

Rim Transported quantity of waste date from date farmland i to by-product factory m

Ui 1 if date farmland i is opened during location; 0, otherwise

Wk 1 if date factory k is opened at location; 0, otherwise

Bm 1 if cosmetic factory m is opened at location; 0, otherwise

Objective function (2) minimizes total CO2 emission
using opened facilities. In Constraint (3), the produc-
tion capacity of each farmland must be equal to or
greater than the number of products shipped from date
farmlands to collection and DCs. Here, waste products
are excluding from the shipped products to collection
and DCs. In Constraint (4), we ensure that at least one
DC and collection should be opened. Constraint (5)

assures the capacity of DCs if it is opened should be
equal to or greater than the quantity of date products
transported from farmlands to collection and DCs. We
imply that the quantity of products transported from
date farmlands to collection and DCs should be equal
or greater than the quantity of products transported
from collection and DCs to date factories in Con-
straint (6). Constraint (7) ensures that at least one date
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factory should be opened. If it is opened, the capacity
of factories should be equal to or greater than the
quantity of products transported from collection and
DCs to date factories in Constraint (8). Constraint (9)
indicates that the quantity of products transported
from date factories to customers should be equal to
customers' demand. Constraint (10) determines that
at least one by-product factory should be opened. We
indicate that the capacity of dye factories if it is open,
should be equal to or greater than the quantity of
waste products transported from farmland and date
factories to dye in Constraint (11). The quantity of
waste shipped from date farmlands to dye factories
should be equal to or greater than the waste products
of farmlands in Constraint (12). Constraint (13) shows
that waste production of farmlands should be equal to
or greater than the quantity of waste products shipped
from date factories to dye factories. Constraint (14)
represents the binary variables. Constraints (15) en-
forces the positivity of the decision variables.

2.2. Applied stochastic programming
Stochastic programming is a prevalent method to
address uncertainty in parameters and situations where
the objective value function is deemed to carry out
well on its average values. This method is utilized
in multi-tire programming [40,41]. Therefore, basic
linear methods cannot be applied when dealing with
uncertain objective functions in this condition and to
�nd the best answers. The uncertain situation when
dealing with customers and uncertainty in their daily
demand for date products made problem to employ a
stochastic approach. Utilizing this approach enables to
conduct the problem in a real-world condition where
daily demand is not certain. To apply this uncertainty
chance constraint method is taken into account. Some
previous works have considered the same approach
to deal with their problems [42{44]. According to
the chance constraint approach, �x is regarded as a
decision variable to include a possibilistic limit into
the model [45]. The following equation shows how this
method is applied for the considered modeling:

Pr

 
KX
k=1

Stkl �Dl � �x

!
�  : (16)

Using the con�dence level  , we have:

�x = min

(
xjPr

 
KX
k=1

Stkl �Dl � �x

!
�  

)
: (17)

The Eq. (17) can be converted into the following
equation:

G =
KX
k=1

Stkl �Dl � �x: (18)

Here we de�ne 
s as an uncertain parameter with the

normal distribution. Hence, G also follows a normal
distribution.

E(G) =
KX
k=1

Stkl �Dl � �x; (19)

V ar(G) = V ar (
s)

"
KX
k=1

Stkl �Dl

#2

; (20)

where E(G) is the expected value of G. Since G follows
a normal distribution, the following equation follows a
standard normal distribution:

Pr
�
G� E (G)
V ar (G)

< � E (G)
V ar (G)

�
>  ; (21)

If we de�ne ! = G�E(G)p
V ar(G)

, then we have:

Pr

 
! � E (G)p

V ar (G)

!
>  ; (22)

'�1 ( ) � � E (G)p
V ar (G)

: (23)

Here, we can write:

'�1 ( )
p
V ar (G) � �E (G) ; (24)

'�1 ( )
p
V ar (
s)

"
KX
k=1

Stkl �Dl

#
�

KX
k=1

Stkl �Dl � �i + �x: (25)

2.3. Weighted LP-metric method
The LP-metric method, also known as the compre-
hensive benchmark method, is to solve multi-objective
models. For a problem with n objective functions,
the optimal value of each objective function (from the
�rst to the nth) must be calculated independently of
the rest of the other n-1 objective functions, taking
into account all the constraints of the problem. Since
the closer the objective functions are to their optimal
values, the more desirable the answers to the problem,
the problem looks for an objective function that uses
all those functions to get closer to their optimal values.
Therefore, we de�ne the objective function as follows:

Min Z =
kX
i=1

�
f�i � fi
f�i

�p
: (26)

In Eq. (26), the values of f�i are equal to the optimal
objective function values of the problem, and the values
of fi are the values related to each of the objective
functions of the problem.
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2.3.1. De�ning norm
In functional algebra and analysis, a norm means a
vector or a continuous function that assigns a positive
number called length or size to any vectors in a vector
space. Di�erent values are given for p, some of which
are considered p = 1 and some p = 2; it is clear that
the �rst case means that the relative sum of deviations
is minimized, and the second case means minimizing
the sum of the second power of relative deviations.

2.3.2. LP-metric characteristic
This method minimizes the sum of the relative de-
viations of the objectives from their optimum value
and combines multiple objective functions into a single
objective [46]. The LP-metric method receives more
attention for two reasons:

� It requires less information from the decision-
makers;

� It is easy to use in practice.

The measure of the proximity of a solution is as follows,
so for minimizing Z, we have:

Min Z =
kX
i=1

Wi

�
Z�i � Zi
Z�i

�p
: (27)

Eq. (27) is the same as Eq. (26). The di�erence is
that the weight values of Wi have been added to it.
These weight values will help the objective function to
achieve the optimal state more quickly. On the other
hand, with the �nding of the optimal level in the LP-
metric method, this weight vector function will advance
the answer to the optimization more quickly. Also, the
following equation for the sum of Wi is considered:

kX
i=1

Wi = 1: (28)

To eliminate the problem of di�erences in the scales
of the objectives, the deviation of the ideal answer
of the ith objective will be divided by Z�i . It also

determines the degree of emphasis on deviations so that
the larger the value, the greater the emphasis on the
largest deviation [47]. The overall objective function
of the LP-metric method must also be minimized to
minimize deviations from the ideal.

In this method, we optimize the objective func-
tions separately through optimization software, consid-
ering all the limitations of the problem, and consider
the optimal solutions obtained from each objective
function as Z�i . Now, we will try to minimize the devi-
ation function resulting from the above two functions.
Therefore, the LP-metric method is de�ned as follows:

Min Z =
kX
i=1

Wi

�
Z�i � Zi
Z�i

�p
; (29)

s.t.:

gi (Xi; X1; X2; � � � ; Xn) � bi; (30)

Zi = fi (X1; X2; :::; Xn) ; (31)

Xi � 0 i = 1; 2; :::; k; (32)

8Zi: (33)

Using the �rst norm, the proposed modeling can be
changed and obtained by Eq. (34) as shown in Box I.

Using Eq. (34) as an objective function and Eq.
(27) in the constraints, the problem can be solved with
di�erent Pareto solutions to �nd the optimum answer.

3. Solution approach

This study formulates a bi-objective programming
model, which considers the total costs of the proposed
SCND for date product and CO2 emission. This model
uses several binary variables for opening di�erent cen-
ters, which ultimately leads to the complexity of the
proposed model. Generally, the problem size is directly
associated with the problem complexity as a larger-
sized problem yields more complexity [48,49]. In ad-
dition, exact approaches to �nd optimal solutions can

Min Z =w1

0BB@
IP
i=1

fiUi +
KP
k=1

fkWk +
MP
m=1

fmBm +
IP
i=1

JP
j=1

CijXij +
JP
j=1

KP
k=1

CjkGjk +
KP
k=1

LP
l=1

CklSkl

+
KP
k=1

MP
m=1

CkmEkm +
IP
i=1

NP
n=1

CimRim

1CCA
Z�1

+ w2

Z�2 �
��

IP
i=1

Ui +
KP
k=1

fk +
MP
m=1

fm
�
� EM

�
Z�2

: (34)

Box I
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Figure 3. Encode/decode strategy for Sections 1� 5.

Figure 4. Implemented steps of the MOKA.

always be time-consuming in these problems [50]. So,
in this section, we explained the implemented strategy
for the encoding/decoding plan for the suggested meta-
heuristics.

3.1. Encode/decode plan
Strategies such as using the matrix of Michalewicz by
Michalewicz et al. [51], Prufer numbers by Pr�ufer [52],
and priority-based solution method by Gen et al. [53]
represent multiple approaches to encode the problem
solutions. The proposed method by Gen et al. [53]
(priority-based solution method) is utilized in this
work. The schematic plan to encode and decode the
purpose for chromosomes is shown in Figure 3. Each
section has three rows in which the �rst one shows
the 
ow among the de�ned centers in the problem.
The other two rows are the developed random number
between [0] and 1, and the last one represents the
priority decode plan.

3.2. Multi-Objective Keshtel Algorithm
(MOKA)

The KA, developed by Hajiaghaei-Keshteli and Amin-
nayeri [54], is based on observation and applying the
unusual behavior of Keshtel ducks when feeding.

Considering these amazing characterizes, the
MOKA [30] considers simultaneous objectives and
optimizes them. The prosperity of this solution method
is that it also guarantees the problem's feasibility [55].
The overview of this solution method is depicted in
Figure 4.

3.3. Multi-Objective Simulated Annealing
(MOSA)

The SA algorithm, proposed by Kirkpatrick et al. [56],
is one of the famous single-solution algorithms in this
regard [57]. Eq. (35) examines this procedure for this
algorithm as follows [58]:

x : Initial solutions
x0 : Newly developed solutions
�fj = fj (x0)� fj (x) j = 1; 2; :::; n:

(35)

Figure 5 shows the pseudocode of the proposed MOSA.

3.4. Implemented NSGA-II and NRGA
This section considers the NRGA and NSGA-II
proposed by Al Jadaan et al. [59] and Deb et al. [60],
respectively.

The selection mechanism is one of the di�erent
points when using NRGA or NSGA-II, as the NRGA
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Figure 5. Implemented steps of multi-objective simulated
annealing algorithm.

and NSGA-II use the roulette wheel and binary tourna-
ment, respectively [61]. Figure 6 shows the pseudocode
of these two algorithms.

4. Computational results

An intelligent experiment would be catered to inves-
tigate the e�ciency of the utilized approaches, which
are investigated at three levels. Random data are �rst
created. The Taguchi approach and Response Surface
Methodology (RSM) are carried out [62,63]. Finally,
the results would be compared, and the best method is
picked base on the de�ned norms [64].

4.1. Generating data
To investigate the productivity of the presented algo-
rithms, three diverse problem sizes are proposed. Ta-
ble 2 illustrates the problem sizes and their associated
settings. The proposed meta-heuristic algorithms are
investigated by the instances. These settings include
the dimensions from small sizes to large-sized problems.

Table 2. Problem classi�cation.

Classi�cation Instance Problem size
(i, j, k, l, m,)

Small

SP1 (6, 6, 6, 6, 6, 6)

SP2 (7, 8, 8, 8, 6, 7)

SP3 (15, 12, 12, 12, 8)

Medium

MP4 (25, 25, 25, 25, 12)

MP5 (35, 35, 35, 35, 35, 35)

MP6 (60, 60, 45, 45, 45, 45)

MP7 (70, 65, 50, 50, 50, 50)

Large

LP8 (120, 100, 100, 100, 80)

LP9 (150, 150, 150, 150, 80)

LP10 (200, 200, 200, 200, 100)

In this regard, a set of farmlands (i), collection and DCs
(j), date factories (k), customers (l), and by-product
factories (m) are considered. Also, Table 3 represents
the considered parameters and their values to initialize
the given problem.

4.2. Parameter setting
To get the most bene�ts out of the utilized metaheuris-
tic algorithms, each associated parameter should be
tuned. Tuning enables the metaheuristic algorithms
to perform much better, and ultimately, they will
get better output results. This enhancement in the
algorithm's performance shows itself in both the quality
of the solutions and the time to reach the optimum
answer. The Taguchi method is employed to ascertain
an appropriate value for the proposed algorithm's
parameters. Table 4 shows the parameters and their
levels.

The Taguchi experiment allows tuning the algo-
rithm's parameters while reducing the number of tries
to achieve them. Hence, when the objective function

Figure 6. Pseudocode of the NRGA and NSGA-II.
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Table 3. Values of parameters.

Parameters Value Parameters Value

fi Uniform�[14000,24000] Dl Uniform�[15000,20000]

fk Uniform�[22500,37000] �i Uniform�[5500,7900]

fm Uniform�[15000,18300] �j Uniform�[4150.6100]

Cij Uniform�[7300,8500] �k Uniform�[6120,.7200]

Cjk Uniform�[4600,5200] �m Uniform�[1590,4190]

Ckl Uniform�[6940,7200] vi Uniform�[0.46,0.79]

Cim Uniform�[3000,5000] �k Uniform�[0.26,0.49]

Ckm Uniform�[3200,4800] EM Uniform�[0.11,0.91]

Table 4. Proposed meta-heuristic algorithm in terms of their levels and factors (x = i+ j + k + l +m).

Algorithms Factor Level 1 Level 2 Level 3

NSGA-II

A: Pc 0.62 0.71 0.84

B: Pm 0.16 0.18 0.21

C: N -pop 65 125 185

D: Max-iteration 2x 3x 4x

NRGA

A: Pc 0.62 0.71 0.84

B: Pm 0.16 0.18 0.21

C: N -pop 65 125 185

D: Max-iteration 2x 3x 4x

MOKA

A: M1 16% 14% 19%

B: M2 25% 15% 35%

C: Smax 0.22 0.26 0.31

D: N -Keshtel 180 220 240

E: Max-0iteration 2x 3x 4x

MOSA

A: T0 1200 1400 1500

B: � 0.93 0.94 0.95

C: Max-iteration 2x 3x 4x

is minimization, the \smaller-is-better" concept is uti-
lized to deal with the problem [65]. Also, Eq. (27) is
represented to investigate the signal-to-noise ratio [66].

S=N = �10 log
�Pn

i=1 Y
2
i

n

�
; (36)

where n determines the number of experiments while Y
determines the observed data [67]. Ten test problems
in three categories have been run 40 times to achieve
the best levels of each algorithm. Since the problem
cannot be solved and compared straight, the Relative
Percentage Deviation (RPD) is used. The RPD is

showed as follows [68,69]:

RPD =
jAlgsol �Minsolj

Minsol
; (37)

where Algsol represents the value of objective in in-
dividual trials, also, Minsol shows the best solution
among all trials [70]. Next, this value is changed into
the RPD, and mean values are achieved. Then, the
Taguchi method sets the orthogonal arrays to reduce
the experiments for algorithms [71]. L9 design opts
for the MOKA, L16 design opts for MOSA, and L27
for NSGA-II and NRGA [72], respectively. Figures 7{
10 illustrates the signal-to-noise ratio for all the given
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meta-heuristic algorithms. The tuned algorithm's
parameters are described in Table 5.

4.3. Comparing algorithms and the utilized
metrics

To consider the applicability and practicality of the two
proposed meta-heuristics, this section represents two
metrics that can evaluate di�erent characteristics of
the metaheuristics, including the Mean Ideal Distance
(MID) and CPU time [73,74]. These metrics are
described below:

Figure 7. Signal-to-noise (S/N) plot for the NSGA-II.

Figure 8. Signal-to-noise (S/N) plot for NRGA.

Figure 9. Signal-to-noise (S/N) plot for the MOSA
algorithm.

Figure 10. Signal-to-noise (S/N) plot for the MOKA.

(a) MID: To evaluate this metric, the di�erence
between Pareto solutions and ideal ones must be cal-
culated [75]. This evaluation approach is described
as Eq. (35) for two objectives function models [76].

MID=

Pn
i=1

r�
f1
i�f1

best
f1max

total�f1min
total

�2
+
�

f2
i�f2

best
f2max

total�f2min
total

�2

n
; (38)

where n is the number of non-dominated answers;
f1
i ; f2

i are the value of the ith non-dominated an-
swers for the two objectives.

The algorithm has better performance in fewer
values of MID [77].
(b) CPU: The less the computational time, the
better the performance of the algorithm.

Here we categorized problems into three di�erent
sizes, such as small-sized problem (1{3), medium-
sized problem (4{7), and large-sized problem (8{10).
The problem answers are obtained using the computer
device with 12 GB RAM, 2.3 GHz CPU, windows 10
OS. The results are shown in Table 6.

The Analysis of Variance (ANOVA) is conducted
to compare these two metrics. The interval plots for
the mentioned metrics are shown in Figures 11 and 12.

As can be concluded from Figures 11 and 12, the
MOKA has superiority in terms of the MID, and in
terms of CPU time, the MOSA showed better perfor-
mances. Comparing the results of CPU time indicates
that MOSA is the best algorithm in all the problem
samples, and it can reach its best results in a shorter
time. In addition, it has the best variance. In terms
of the quality of the problem outcomes, considering the
MID is handy. The MOKA shows the best results since

Table 5. Algorithm's tuned parameters.

Algorithm Parameters

NSGA-II Pc = 0:71; Pm = 0:16; N-pop=65; Max-iteration= 3x
NRGA Pc = 0:62; Pm = 0:16; N-pop=125; Max-iteration= 4x
MOSA T0 = 1400; � = 0:94; Max-iteration= 2x
MOKA M1 = 19%; M2 = 15%; Smax = 0:26; N-Keshtel=180; Max-iteration=4x
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Table 6. Algorithm evaluation in each considered metric (�106)

.

Problem MID CPU time

NSGA-II NRGA MOKA MOSA NSGA-II NRGA MOKA MOSA

1 1.624768 2.578007 1.536059 4.25988 68.47097 75.67316 116.7185 20.12469

2 1.219475 1.283882 1.280612 2.535287 149.7642 167.6113 281.0178 31.64245

3 2.304143 2.208677 3.183059 2.329862 258.7157 285.9377 526.7324 33.56238

4 3.936104 2.30447 2.53398 5.991338 391.9419 444.071 811.2392 36.31603

5 4.027755 2.846531 4.020017 3.503348 966.2851 1082.003 2193.278 46.1929

6 3.473815 3.056752 3.62693 5.484041 1281.524 1387.456 2446.077 50.59081

7 5.464861 5.928349 4.627248 5.252679 1494.515 1670.263 2864.669 55.64986

8 6.403497 6.169192 5.824165 5.42225 2511.428 2821.97 6080.222 87.96949

9 5.278725 4.446016 7.323934 5.601085 6013.592 5458.181 11124.6 117.0055

10 4.319274 4.040941 11.21143 6.368079 6622.533 6091.259 13198.63 127.1979

Figure 11. Interval plot of CPU time (at 95% con�dence
level).

Figure 12. Interval plot of MID (at 95% con�dence
level).

it has a minimum MID average. Also, the second-
best algorithm in this regard is MOSA, with lower
variance concerning the MOKA. The Pareto solutions
of the problem outcome are described in Table 7 and
Figure 13 for test problem 6.

Figure 13. Pareto solution of test problem 12.

4.4. Sensitivity analysis
Here, we do sensitivity analysis on the main param-
eters. Table 8 has demonstrated the model conduct
when changing in values of demand rate. Model
changeability, the e�ects on various parameters, and
the objective functions of each metaheuristic algorithm
are considered. The more the demand, the more the
total costs of the proposed network. In addition, other
parameters a�ected by this change are illustrated in
Table 8.

Next, the transportation costs have been taken
into account. Thus, we �rstly enhanced and then
declined its value by 20 and 40%. The changes in
other parameters are shown in Table 9. As afore-
mentioned, it is interesting to note that increasing the
value of opening and purchasing costs increases their
value. However, the increase in purchasing costs is not
much. In addition, such an increase would decrease the
operation cost since a new center must be opened with
a lower process cost.

Last but not least, we consider the changes in
the emission parameters. As stated in Table 10,
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Table 7. Pareto solutions based on weights.

Weights 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Total
cost

290618.59 304753.64 320647.13 316390.67 320052.75 318216.38 329500.07 320394.99 316177.14 318504.07

Total
emission

230.84 234.22 235.89 237.75 237.90 239.62 241.35 239.86 240.06 232.17

Total
cost

293667.80 306471.41 316503.66 316325.35 323808.47 317307.26 329059.95 318097.20 317380.28 318979.06

Total
emission

232.45 234.23 236.04 237.76 237.92 239.45 241.16 234.99 238.42 232.17

Total
cost

296277.81 315257.34 317618.36 317745.92 327648.99 31 7838.06 316916.04 323759.57 318803.01 325250.24

Total
emission

232.51 234.27 237.54 239.28 237.95 239.55 241.37 235.20 241.64 232.17

Total
cost

301692.27 316466.93 322083.67 318036.74 317826.76 322294.48 317185.26 324957.53 321074.35 325427.14

Total
emission

232.54 234.28 237.59 239.32 239.38 241.15 242.92 236.71 241.67 232.17

Table 8. Behavior of the model with a change in demand
rate.

Dl

40% " 0% 40% #
Opening cost 0.00% { 1.28%

Processing cost 0.01% { {1.10%

Transportation cost 1.52% { 3.11%

Objective function

NRGA 3.122% { {2.43%

MOSA 3.768% { {2.55%

MOKA 2.131% { {2.25%

NSGA-II 1.491% { {2.12%

the more emission will have more decision variables
and objective functions. This change indicates that
it must be considered when opening new facilities.
Hence, the majority of the opening costs are a�ected
by the emission ratio. Therefore, other variables are
dependent on this change.

5. Conclusion and further perspective

Considering the agricultural supply chain and deter-
mining optimal 
ow among the di�erent levels of
a product's value chain can signi�cantly a�ect the
pro�tability of certain products. An e�cient network
design is required to guarantee the maximum pro-
ductivity for a speci�c agricultural product, such as
date. Designing such a network for this important
product decreases the total costs of the date industry
and increases the e�ciency of providing the customers
with their potential needs. These products can be
transferred to di�erent markets while the emission is
reduced. This consideration has failed in previous
studies. Therefore, an e�cient network is designed
for date products to increase product 
ow e�ciency
in a forward direction and reduce the total associated
costs of the supply chain by optimizing the costs and
emissions. The utilized MILP model is designed to
calculate the number of opened centers. In addition,
this model minimizes the total logistic costs.

The study's �nding revealed that considering by-
product factories for waste collection can signi�cantly
a�ect the model outcome by reducing the total costs of
the proposed supply chain network and reducing CO2
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Table 9. Model behavior when changing transportation parameters.

(Total transportation cost)

40%" 20%" 0% 20%# 40%#
Opening cost 36.13% 7.92% { 0.00% {20.20%

Processing cost 1.83% 3.04% { -4.45% {1.07%

Objective function

NRGA 9.03% 9.03% { -7.32% {15.16%

MOSA 9.17% 9.17% { -5.47% {13.72%

MOKA 9.11% 9.11% { -7.07% {14.54%

NSGA-II 7.93% 7.93% { {6.35% {13.39%

Table 10. Behavior of the model with change in the emission rate.

EM (Emission rate)

40%" 20%" 0% 20%# 40%#
Opening cost 19.15% 0.00% { �5:32% �5:66%

Operation cost 10.30% 6.17% { �6:52% �13:67%

Transportation cost 14.12% 6.56% { �6:91% �12:99%

Objective function

NRGA 59.24% 26.73% { �26:83% �51:14%

MOSA 59.88% 26.04% { �26:94% �50:25%

MOKA 58.56% 26.37% { �26:84% �49:27%

NSGA-II 61.76% 25.66% { �26:90% �49:07%

emissions. In addition, the model is so responsive to
transportation costs that increasing the logistics costs
would increase opening costs. On the other hand, when
the logistics costs are lower, there is less need to open
new facilities since it is logical to open new facilities
when logistic costs are lower. Increasing the demand
rate would also increase the total costs of the date
supply chain network since more demand means more
transportation, opening, and procession costs. The
emission rate also acts the same. To obtain expected
results, managers can actively focus on various aspects
of the date supply chain, such as opening and closing
facilities, logistics costs, distributing their demands in
various periods, and concerning environmental factors.
In addition, they can adjust some of these parameters
to get the desired outcome.

From the managerial aspect, considering forward
direction might result in problem optimality. However,
taking particular sites to by-products would guarantee
the most bene�t out of the date product industry.
Also, the conducted sensitivity analyses on the product
showed an increase in the opening costs when increas-
ing its value. Therefore, managers could wisely decide
to justify or considers a unique trade-o� between these

two costs. Both governmental and private sectors are
the bene�ciaries of the prevalent works regarding cost,
quality, and social and environmental aspects of this
optimization. In fact, the key factors of competitive
advantages in the supply chain would be optimized by
optimizing the network. So, all stakeholders relevant to
the supply chain can take advantage of the bene�ts of
these optimizations. Even the customers of this chain
can utilize the better quality and the lower cost of the
product. Furthermore, last but not least, by enforcing
and establishing green consideration, the environmen-
tal factor is also enhanced. Thus, this action itself can
provide inestimable advantages, mostly in such social
and environmental aspects.

Therefore, emerging topics, including incorporat-
ing the old and new metaheuristic algorithms, are
highly recommended. To accomplish a detailed man-
agerial decision, it is quite fundamental to enforce and
analyze the settings of the proposed study on other
case parameters. To move forward with this study,
social and environmental factors, water consumption,
and job employment opportunity should help the
model development for simultaneous consideration of
costs.
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