References:
[1] Newman, M.E.J. The structure and function of complex networks". SIAM Review, 45(2), pp. 167{256 (2003).
[2] Boccaletti, S., Pisarchik, A.N., del Genio, C.I., and Amann, A. Synchronization: From Coupled Systems to Complex Networks. Cambridge: Cambridge University Press (2018).
[3] Pecora, L.M., Carroll, T.L., Johnson, G.A., Mar, D.J., and Heagy, J.F. Fundamentals of synchronization in chaotic systems, concepts, and applications". Chaos, 7(4), pp. 520{543 (1997).
[4] Pikovsky, A., Rosenblum, M., and Kurths, J. Synchronization: a universal concept in nonlinear sciences. Cambridge: Cambridge University Press, 1st edition (2001).
[5] Strogatz, S.H. Exploring complex networks". Nature, 410, pp. 268{276 (2001).
[6] Yanchuk, S., Maistrenko, Y., and Mosekilde, E. Synchronization of time-continuous chaotic oscillators". Chaos, 13(1), pp. 388{400 (2003).
[7] Arenas, A., Daz-Guilera, A., Kurths, J., Moreno, Y., and Zhou, C. Synchronization in complex networks". Phys. Rep., 469(3), pp. 93{153 (2008).
[8] Huygens, C. Horologium Oscillatorium: sive de motu pendulorum ad horologia aptato demonstrationes geometricae. Christiaan Huygens, 1st edition (1673).
[9] Kuramoto, Y. Chemical Oscillations, Waves and Turbulence. Berlin: Springer-Verlag (1984).
[10] Dai, X., Li, X., Guo, H., Jia, D., Perc, M., Manshour, P., Wang, Z., and Boccaletti, S. Discontinuous transitions and rhythmic states in the d-dimensional kuramoto model induced by a positive feedback with the global order parameter". Phys. Rev. Lett., 125(19), p. 194101 (2020).
[11] Yanchuk, S., Maistrenko, Y., and Mosekilde, E. Partial synchronization and clustering in a system of di usively coupled chaotic oscillators". Math. Comp. Simul., 54, pp. 491{508 (2001).
[12] Sorrentino, F. and Ott, E. Network synchronization of groups". Phys. Rev. E, 76(5), 056114 (2007).
[13] Dahms, T., Lehnert, J., and Scholl, E. Cluster and group synchronization in delay-coupled networks". Phys. Rev. E, 86(1), p. 016202 (2012).
[14] Miyakawa, K., Okano, T., and Yamazaki, T. Cluster synchronization in a chemical oscillator network with adaptive coupling". Journal of the Physical Society of Japan, 82(3), p. 034005 (2013).
[15] Zhang, Y. and Motter, A.E. Symmetry-independent stability analysis of synchronization patterns". SIAM Rev., 62(4), pp. 817{836 (2020).
[16] Kuramoto, Y. and Battogtokh, D. Coexistence of Coherence and Incoherence in Nonlocally Coupled Phase Oscillators." Nonlin. Phen. in Complex Sys., 5(4), pp. 380{385 (2002).
[17] Abrams, D.M. and Strogatz, S.H. Chimera states for coupled oscillators". Phys. Rev. Lett., 93(17), p. 174102 (2004).
[18] Motter, A.E. Nonlinear dynamics: Spontaneous synchrony breaking". Nat. Phys., 6(3), pp. 164{165 (2010).
[19] Panaggio, M.J. and Abrams, D.M. Chimera states: Coexistence of coherence and incoherence in networks of coupled oscillators". Nonlinearity, 28, p. R67 (2015).
[20] Scholl, E. Synchronization patterns and chimera states in complex networks: interplay of topology and dynamics". Eur. Phys. J. Spec. Top., 225, pp. 891{919 (2016).
[21] Sawicki, J., Omelchenko, I., Zakharova, A., and Scholl, E. Delay controls chimera relay synchronization in multiplex networks". Phys. Rev. E, 98, p. 062224 (2018).
[22] Omel'chenko, O.E. and Knobloch, E. Chimerapedia: coherence{incoherence patterns in one, two and three dimensions". New J. Phys., 21(9), p. 093034 (2019).
[23] Andrzejak, R.G., Ruzzene, G., Scholl, E., and Omelchenko, I. Two populations of coupled quadratic maps exhibit a plentitude of symmetric and symmetry broken dynamics". Chaos, 30(3), p. 033125 (2020).
[24] Drauschke, F., Sawicki, J., Berner, R., Omelchenko, I., and Scholl, E. E ect of topology upon relay synchronization in triplex neuronal networks". Chaos, 30, p. 051104 (2020).
[25] Scholl, E., Zakharova, A., and Andrzejak, R.G. Chimera States in Complex Networks. Research Topics, Front. Appl. Math. Stat. Lausanne: Frontiers Media SA (2020). Ebook.
[26] Zakharova, A. Chimera Patterns in Networks: Interplay between Dynamics, Structure, Noise, and Delay. Understanding Complex Systems. Springer (2020).
[27] Scholl, E. Chimeras in physics and biology: Synchronization and desynchronization of rhythms". Nova Acta Leopoldina, 425 (2020). Invited contribution.
[28] Parastesh, F., Jafari, S., Azarnoush, H., Shahriari, Z., Wang, Z., Boccaletti, S., and Perc, M. Chimeras". Phys. Rep., 898, pp. 1{114 (2021).
[29] Singer, W. Neuronal Synchrony: A Versatile Code Review for the De nition of Relations?" Neuron, 24, pp. 49{65 (1999).
[30] Wang, X.J. Neurophysiological and computational principles of cortical rhythms in cognition". Phys. Rev., 90(3), pp. 1195{1268 (2010).
[31] Fell, J. and Axmacher, N. The role of phase synchronization in memory processes". Nat. Rev. Neurosci., 12(2), pp. 105{118 (2011).
[32] Hammond, C., Bergman, H., and Brown, P. Pathological synchronization in Parkinson's disease: networks, models and treatments". Trends Neurosci., 30, pp. 357{364 (2007).
[33] Schi , S.J. Towards model-based control of Parkinson's disease". Phil. Trans. R. Soc. A, 368, pp. 2269{2308 (2010).
[34] Kromer, J.A. and Tass, P.A. Long-lasting desynchronization by decoupling stimulation". Phys. Rev. Research, 2(3), p. 033101 (2020).
[35] Kromer, J.A., Khaledi-Nasab, A., and Tass, P.A. Impact of number of stimulation sites on long-lasting desynchronization e ects of coordinated reset stimulation". Chaos, 30(8), p. 083134 (2020).
[36] Lehnertz, K., Bialonski, S., Horstmann, M.T., Krug, D., Rothkegel, A., Staniek, M., and Wagner, T. Synchronization phenomena in human epileptic brain networks". J. Neurosci. Methods, 183(1), pp. 42{48 (2009).
[37] Mormann, F., Lehnertz, K., David, P., and Elger, C.E. Mean phase coherence as a measure for phase synchronization and its application to the EEG of epilepsy patients". Physica D, 144(3-4), pp. 358{369 (2000).
[38] Jiruska, P., de Curtis, M., Je erys, J.G.R., Schevon, C.A., Schi , S.J., and Schindler, K. Synchronization and desynchronization in epilepsy: controversies and hypotheses". J. Physiol., 591.4, pp. 787{797 (2013).
[39] Jirsa, V.K., Stacey, W.C., Quilichini, P.P., Ivanov, A.I., and Bernard, C. On the nature of seizure dynamics". Brain, 137, p. 2210 (2014).
[40] Rothkegel, A. and Lehnertz, K. Irregular macroscopic dynamics due to chimera states in small-world networks of pulse-coupled oscillators". New J. Phys., 16, p. 055006 (2014).
[41] Andrzejak, R.G., Rummel, C., Mormann, F., and Schindler, K. All together now: Analogies between chimera state collapses and epileptic seizures". Sci. Rep., 6, p. 23000 (2016).
[42] Chouzouris, T., Omelchenko, I., Zakharova, A., Hlinka, J., Jiruska, P., and Scholl, E. Chimera states in brain networks: empirical neural vs. modular fractal connectivity". Chaos, 28(4), p. 045112 (2018).
[43] Gerster, M., Berner, R., Sawicki, J., Zakharova, A., Skoch, A., Hlinka, J., Lehnertz, K., and Scholl, E. FitzHugh-Nagumo oscillators on complex networks mimic epileptic-seizure-related synchronization phenomena". Chaos, 30, p. 123130 (2020).
[44] Pecora, L.M. and Carroll, T.L. Master Stability Functions for Synchronized Coupled Systems". Phys. Rev. Lett., 80(10), pp. 2109{2112 (1998).
[45] Brechtel, A., Gramlich, P., Ritterskamp, D., Drossel, B., and Gross, T. Master stability functions reveal di usion-driven pattern formation in networks". Phys. Rev. E, 97(3), p. 032307 (2018).
[46] Berner, R., Sawicki, J., and Scholl, E. Birth and stabilization of phase clusters by multiplexing of adaptive networks". Phys. Rev. Lett., 124(8), p. 088301 (2020).
[47] Choe, C.U., Dahms, T., Hovel, P., and Scholl, E. Controlling synchrony by delay coupling in networks: from in-phase to splay and cluster states". Phys. Rev. E, 81(2), p. 025205(R) (2010).
[48] Flunkert, V., Yanchuk, S., Dahms, T., and Scholl, E. Synchronizing distant nodes: a universal classi cation of networks". Phys. Rev. Lett., 105, p. 254101 (2010).
[49] Greenshields, C. Master stability function for systems with two coupling delays" (2010).
Private communication.
[50] Lehnert, J., Dahms, T., Hovel, P., and Scholl, E. Loss of synchronization in complex neural networks with delay". Europhys. Lett., 96, p. 60013 (2011).
[51] Flunkert, V., Yanchuk, S., Dahms, T., and Scholl, E. Synchronizability of networks with strongly delayed links: a universal classi cation". Contemp. Math., 48, pp. 134{148 (2013).
English version: J. of Math. Sciences (Springer), 2014.
[52] Keane, A., Dahms, T., Lehnert, J., Suryanarayana, S.A., Hovel, P., and Scholl, E. Synchronisation in networks of delay-coupled type-I excitable systems". Eur. Phys. J. B, 85(12), p. 407 (2012).
[53] Wille, C., Lehnert, J., and Scholl, E. Synchronization-desynchronization transitions in complex networks: An interplay of distributed time delay and inhibitory nodes". Phys. Rev. E, 90, p. 032908 (2014).
[54] Kyrychko, Y.N., Blyuss, K.B., and Scholl, E. Synchronization of networks of oscillators with distributed-delay coupling". Chaos, 24, p. 043117 (2014).
[55] Lehnert, J. Controlling synchronization patterns in complex networks. Springer Theses. Heidelberg: Springer (2016).
[56] Huddy, S.R. and Sun, J. Master stability islands for amplitude death in networks of delaycoupled oscillators". Phys. Rev. E, 93, p. 052209 (2016).
[57] Borner, R., Schultz, P., Unzelmann, B., Wang, D., Hellmann, F., and Kurths, J. Delay master stability of inertial oscillator networks". Phys. Rev. Research, 2(2), p. 023409 (2020).
[58] Sorrentino, F. Synchronization of hypernetworks of coupled dynamical systems". New J. Phys., 14, p. 033035 (2012).
[59] Mulas, R., Kuehn, C., and Jost, J. Coupled dynamics on hypergraphs: Master stability of steady states and synchronization". Phys. Rev. E, 101(6), p. 062313 (2020).
[60] Berner, R., Vock, S., Scholl, E., and Yanchuk, S. Desynchronization transitions in adaptive networks". Phys. Rev. Lett., 126(2), p. 028301 (2021).
[61] Gross, T. and Blasius, B. Adaptive coevolutionary networks: a review". J. R. Soc. Interface, 5(20), pp. 259{271 (2008).
[62] Aoki, T. and Aoyagi, T. Co-evolution of phases and connection strengths in a network of phase oscillators". Phys. Rev. Lett., 102, p. 034101 (2009).
[63] Kasatkin, D.V., Yanchuk, S., Scholl, E., and Nekorkin, V.I. Self-organized emergence of multi-layer structure and chimera states in dynamical networks with adaptive couplings". Phys. Rev. E, 96(6), p. 062211 (2017).
[64] Gerstner, W., Kempter, R., von Hemmen, J.L., and Wagner, H. A neuronal learning rule for sub-millisecond temporal coding". Nature, 383(6595), pp. 76{78 (1996).
[65] Abbott, L.F. and Nelson, S. Synaptic plasticity: taming the beast". Nat. Neurosci., 3(11), pp. 1178{1183 (2000).
[66] Dan, Y. and Poo, M.m. Spike timing-dependent plasticity: from synapse to perception". Physiol. Rev., 86(3), pp. 1033{1048 (2006).
[67] Clopath, C., Busing, L., Vasilaki, E., and Gerstner, W. Connectivity reflects coding: a model of voltage-based STDP with homeostasis". Nat. Neurosci., 13(3), pp. 344{352 (2010).
[68] Seliger, P., Young, S.C., and Tsimring, L.S. Plasticity and learning in a network of coupled phase oscillators". Phys. Rev. E, 65(4), p. 041906 (2002).
[69] Berner, R., Scholl, E., and Yanchuk, S. Multiclusters in networks of adaptively coupled phase oscillators". SIAM J. Appl. Dyn. Syst., 18(4), pp. 2227{2266 (2019).
[70] Sakaguchi, H. and Kuramoto, Y. A soluble active rotater model showing phase transitions via mutual entertainment". Prog. Theor. Phys, 76(3), pp. 576{581 (1986).
[71] Asl, M.M., Valizadeh, A., and Tass, P.A. Dendritic and axonal propagation delays may shape neuronal networks with plastic synapses". Front. Physiol., 9, p. 1849 (2018).
[72] Daido, H. Order function and macroscopic mutual entrainment in uniformly coupled limitcycle oscillators". Prog. Theor. Phys., 88(6), pp. 1213{1218 (1992).
[73] Rodrigues, F.A., Peron, T.K.D.M., Ji, P., and Kurths, J. The Kuramoto model in complex networks". Phys. Rep., 610, pp. 1{98 (2016).
[74] Ren, Q. and Zhao, J. Adaptive coupling and enhanced synchronization in coupled phase oscillators". Phys. Rev. E, 76(1), p. 016207 (2007).
[75] Aoki, T. and Aoyagi, T. Self-organized network of phase oscillators coupled by activitydependent interactions". Phys. Rev. E, 84, p. 066109 (2011).
[76] Picallo, C.B. and Riecke, H. Adaptive oscillator networks with conserved overall coupling: Sequential ring and near-synchronized states". Phys. Rev. E, 83(3), p. 036206 (2011).
[77] Ha, S.Y., Noh, S.E., and Park, J. Synchronization of kuramoto oscillators with adaptive couplings". SIAM J. Appl. Dyn. Syst., 15(1), pp. 162{194 (2016).
[78] Avalos-Gaytan, V., Almendral, J.A., Leyva, I., Battiston, F., Nicosia, V., Latora, V., and Boccaletti, S. Emergent explosive synchronization in adaptive complex networks". Phys. Rev. E, 97(4), p. 042301 (2018).
[79] Maistrenko, Y., Lysyansky, B., Hauptmann, C., Burylko, O., and Tass, P.A. Multistability in the kuramoto model with synaptic plasticity". Phys. Rev. E, 75(6), p. 066207 (2007).
[80] Kasatkin, D.V. and Nekorkin, V.I. Dynamics of the phase oscillators with plastic couplings". Radiophysics and Quantum Electronics, 58(11), pp. 877{891 (2016).
[81] Nekorkin, V.I. and Kasatkin, D.V. Dynamics of a network of phase oscillators with plastic couplings". AIP Conf. Proc., 1738(1), p. 210010 (2016).
[82] Aoki, T. and Aoyagi, T. Scale-free structures emerging from co-evolution of a network and the distribution of a di usive resource on it". Phys. Rev. Lett., 109(20), p. 208702 (2012).
[83] Gushchin, A., Mallada, E., and Tang, A. Synchronization of phase-coupled oscillators with plastic coupling strength". In Information Theory and Applications Workshop ITA 2015, San Diego, CA, USA", pp. 291{300. IEEE (2015).
[84] Timms, L. and English, L.Q. Synchronization in phase-coupled Kuramoto oscillator networks with axonal delay and synaptic plasticity". Phys. Rev. E, 89(3), p. 032906 (2014).
[85] Kasatkin, D.V. and Nekorkin, V.I. Synchronization of chimera states in a multiplex system of phase oscillators with adaptive couplings". Chaos, 28, p. 093115 (2018).
[86] Kachhvah, A.D., Dai, X., Boccaletti, S., and Jalan, S. Interlayer hebbian plasticity induces rst-order transition in multiplex networks". New J. Phys., 22, p. 122001 (2020).
[87] Berner, R., Fialkowski, J., Kasatkin, D.V., Nekorkin, V.I., Yanchuk, S., and Scholl, E. Hierarchical frequency clusters in adaptive networks of phase oscillators". Chaos, 29(10), p. 103134 (2019).
[88] Kasatkin, D.V. and Nekorkin, V.I. The e ect of topology on organization of synchronous behavior in dynamical networks with adaptive couplings". Eur. Phys. J. Spec. Top., 227, p. 1051 (2018).
[89] Berner, R., Polanska, A., Scholl, E., and Yanchuk, S. Solitary states in adaptive nonlocal oscillator networks". Eur. Phys. J. Spec. Top., 229(12-13), pp. 2183{2203 (2020).