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Abstract. Synchronization of networks of oscillatory units is an emergent phenomenon
that has been observed in a variety of systems from power grids to ensembles of nerve
cells. Many real-world networks are characterized by adaptive properties; in other words,
depending on the dynamical states of the system, their connectivity changes with time.
Networks of adaptively coupled oscillators exhibit di�erent synchronization phenomena
such as hierarchical multifrequency clusters, traveling waves, or chimera states. While
these self-organized patterns have been previously studied in all-to-all coupled networks, the
present study further investigated more complex networks by analyzing the e�ect of random
network topologies with di�erent dilution degrees of connectivity. The numerical and
analytical approaches were employed to investigate the robustness of multi-cluster states
on networks of adaptively coupled Kuramoto-Sakaguchi oscillators against random dilution
of the underlying network topology. In addition, a master stability approach was used in
adaptive networks to highlight the interplay between adaptivity and topology. Through
this approach, the robustness of multifrequency cluster states to diluted connectivities can
be illustrated.

© 2021 Sharif University of Technology. All rights reserved.

1. Introduction

In general terms, a complex dynamical network is a
set of dynamical units (nodes) with connections among
them (links), representing a relation or interaction
among the individual elements. In nature as well as
in technology, complex dynamical networks provide
a framework with a broad range of applications in
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physics, chemistry, biology, neuroscience, economy,
social science, etc. [1,2].

Collective behavior of dynamical networks is an
emergent phenomenon of spontaneously ordered dy-
namics. One example of their particular signi�cance
is synchronization [3{7]. First recognized by Huygens
in the 17th century [8], synchronization phenomena in
coupled oscillators are of great signi�cance in science,
nature, engineering, and social life. Depending on the
dynamical properties of a system, diverse synchroniza-
tion patterns of varying complexity such as complete
synchronization [9,10], cluster synchronization [11{15],
and di�erent forms of partial synchronization [16{
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28] have been observed. Synchronization patterns
are believed to play a key role in neural networks,
e.g., in the context of cognition and learning [29{31],
pathological conditions such as Parkinson's disease [32{
35], or epilepsy [36{43].

A central question in the study of synchronization
in complex networks is whether or not such behavior is
stable. In this regard, the master stability approach is a
powerful analytic framework used to study the stability
of synchronized states [44]. Since its introduction,
this approach has been extended to di�erent types of
networks such as multilayer networks [45,46], networks
with time-delays [13,47{57], hypernetworks [58,59], and
very recently, adaptive networks [60]. The master
stability approach allows for separating the e�ects
of local node dynamics from those of the network
topology. This approach can be used to draw general
conclusions on the stability of dynamical systems by
analyzing the eigenvalues of the network connectivity
matrix.

A majority of the previous studies have analyzed
the dynamical processes occurring in static networks,
describing the �xed interaction structures with no
change during time. However, real-world networks
often change in time, adapting their structure in
response to the network state [61{63]. This type of
network called adaptive or co-evolutionary combines
the topological evolution of the network with dynamics
on the network nodes. This behavior is observed in a
number of real-world applications. For instance, power
grids and tra�c networks continuously change to meet
the evolving requirements of society. Further, adaptive
behavior is of great signi�cance in neural networks, i.e.,
networks of individual neurons connected by synapses
that pass electrical or chemical signals among them.
As shown, the coupling weights among the individual
neurons may be potentiated or depressed, depending on
the order of the spike times of post- and pre-synaptic
neurons [64{66]. This mechanism called spike timing-
dependent plasticity is believed to play an important
role in temporal coding of information in the brain [67].

In this study, the robustness of multi-cluster
states was investigated in the networks of adaptively
coupled Kuramoto-Sakaguchi oscillators against ran-
dom dilution of the underlying network topology. By
randomly and successively deleting links, we observe
a linear dependence of the cluster frequencies on the
relative number of deleted links. This linear depen-
dence can be elaborated by a suitable approximation
of the frequencies of oscillators. In addition, it was nu-
merically shown that the shape of a multi-cluster state
was preserved on networks of di�erent sparsity, ranging
from fully coupled to almost uncoupled topologies.
Further, it was found that the observed multi-cluster
states were multi-stable, indicating that di�erent multi-
clusters might emerge from di�erent initial conditions.

The master stability approach was used for adaptive
networks to present the e�ects induced by changes
of the network topology on the desynchronization of
the phase synchronized state. As shown, the result-
ing desynchronization had strong implications for the
emergence of multi-cluster states.

The present study is organized as follows. In
Section 2, the model used in this study is introduced.
In Section 3, the emergence and structural forma-
tions of multi-frequency-cluster states are discussed.
In Section 4, the e�ect of random dilution of links
in the connectivity structure on multi-cluster states
is investigated by applying a suitable randomization
process on the network connectivity. In Section 5, the
master stability approach is used for adaptive networks
to investigate the interplay between the nodal dynam-
ics, adaptivity, and a complex connectivity structure.
Finally, in Section 6, the obtained results are given
to further elaborate a desynchronization transition by
changes in the network topology.

2. Model

One successful approach to studying the di�erent
aspects of synchronization phenomena in networks of
coupled oscillators is o�ered by the paradigmatic Ku-
ramoto model [9]. We consider a network of Kuramoto-
Sakaguchi type phase oscillators with adaptive coupling
weights [63,68,69]:

_�i = ! � �
NX
j=1

aij�ij sin(�i � �j + �); (1)

_�ij = ��(�ij + aij sin(�i � �j + �)); (2)

where �i(t) 2 [0; 2�) describes the phase of oscillator
i 2 f1; :::; Ng and �ij(t) 2 [�1; 1] denotes the coupling
strength from oscillator j to i. The connectivity
structure is composed of elements aij 2 f0; 1g of the
adjacency matrix A which is independent of time. Note
that self-coupling does not a�ect the relative dynamics,
which is the reason why the N diagonal elements aii are
set to zero in all our simulations. Eq. (1) describes a
network of Kuramoto-Sakaguchi type phase oscillators
with a di�usive coupling kernel sin(�i��j+�) scaled by
the overall coupling strength �, where ! is the intrinsic
frequency. The parameter � can be considered as the
phase lag of the interactions among the oscillators [70],
which is even related to a synaptic propagation delay
[71]. Eq. (2) describes the dynamics of the coupling
weights �ij and � � 1 is the time-scale separation
parameter. We de�ne the adaptation function as
� sin(�i � �j + �), where � is a control parameter,
enabling us to implement di�erent plasticity rules that
would occur in neural networks (see Figure 1). For
instance, setting � = ��=2 (Figure 1(a)) would lead to
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Figure 1. The adaptation function � sin(��+ �) used in
System (1)-(2) for the parameter values: (a) � = ��=2
(Hebbian), (b) � = 0 (causal, e�ectively similar to spike
timing-dependent plasticity), and (c) � = �=2
(anti-Hebbian).

the adaptation function corresponding to a Hebbian-
like rule. In this case, the adaptation function is
positive and causes an increase in the synaptic weights
if the phase di�erences of the post- and pre-synaptic
neurons are close to each other, j��j < �=2 where
�� = �i � �j .

The synchrony of the oscillators at a given time
t is typically quanti�ed by the Kuramoto-Daido order
parameter [9,72]. The complex nth order parameter for
the state �(t) = (�1(t); :::; �N (t))T is de�ned as:

Zn(�(t)) = Rn(t)ei n(t) =
1
N

NX
j=1

ein�j(t); (3)

where  n(t) is the collective mean phase of the popu-
lation, and the modulus Rn(t) is given by the absolute
value Rn(t) = j(1=N)

PN
j=1 e

in�j(t)j. The quantity
n 2 N is also referred to as the nth moment of the order
parameter. Here, i =

p�1 denotes the imaginary unit.
The �rst-order parameter Z1 can be regarded as the
centroid of the N phases of the oscillators represented
on the unit circle, i.e., on the complex plane [73]. In the
case of in-phase synchronization, i.e., � = (a; :::; a)T for
some a 2 [0; 2�], the modulus Rn = 1. If Rn = 0, the
oscillators are regarded as incoherent in terms of the
nth moment. This property can be used to distinguish
between the particular types of coherence in terms of
certain discrete phase distributions (see Section 3).

3. Multicluster states in adaptive networks of
phase oscillators

System (1)-(2) generalizes Kuramoto-Sakaguchi type
systems with �xed value of �ij . Recently, this model
has drawn considerable attention, e.g., in synaptic plas-
ticity and learning [62,68,74{78], multistability [79{81],
topological characteristics [82,83], delay [84], hierar-
chical synchronization patterns [63,85], and multiplex
networks [86]. In this section, we briey summarize the
�ndings that were already reported in [63,69,87] and
show di�erent types of multicluster states that emerge

on an all-to-all coupled base topology aij = 1(i 6= j),
starting from random initial conditions (�i 2 [0; 2�),
�ij 2 [�1; 1] for all i; j = 1; :::; N). These states
are characterized by strongly coupled oscillators within
each cluster but weak couplings between the clusters.
While all oscillators in one cluster share a common
frequency, the frequencies between the clusters are
di�erent.

In a multicluster state, the coupling weight matrix
with elements �ij can be divided into M 2 N blocks,
called clusters, each containing a number N� (� =
1; :::;M) of frequency synchronized oscillators. The
entries of this coupling weight matrix are denoted by
�ij;�� , referring to the coupling weight from the jth
oscillator in the �th cluster to the ith oscillator in the
�th cluster. For the temporal behavior of an oscillator
in an M -cluster state, the following form is taken into
consideration:

�i;�(t) = 
�t+ ai;� + si;�(t); (4)

where �i;� denotes the phase of oscillator i inside the
cluster �, 
� is the collective frequency of the cluster,
ai;� 2 [0; 2�) are the phase lags, and function si;�(t)
is the bounded function resulting from the interaction
among the clusters.

Despite the constant frequencies within a cluster,
we can di�erentiate between three types of multiclus-
ters, depending on the oscillator phases [69,87]. The
�rst type is called splay-type multicluster (Figure 2(a),
(c), and (e)). In this case, the coupling weights �ij;��
are either constant or changing periodically in time,
depending on whether the oscillators �i;� and �j;�
belong to either the same (� = �) or a di�erent (� 6= �)
cluster, respectively. The amplitude of the coupling
weights depends on the di�erence in the frequency of
the clusters, where the greater the frequency di�erence,
the smaller the amplitude. The classi�cation into three
strongly coupled clusters as well as the hierarchical
structure in the cluster size is illustrated in Figure 2(a),
(c), and (e). The oscillators are distributed based on
their phases on the unit circle such that the phases of
each splay-type cluster ful�ll the condition R2(a�) = 0
for � = 1; 2; 3 (cf., Eq. (3)).

Figure 2(b), (d), and (f) show another possible
type of multicluster. Here, the oscillators of each
cluster possess the phase ai;� = a� or the antipodal
phase ai;� = a� + �, such that 2ai;� = 2a� for all
i = 1; :::; N�. Therefore, we call these states antipodal-
type multi-cluster. In contrast to splay states, the phase
distribution of this type of state ful�lls R2(a�) = 1,
where � = 1; 2. Note that in-phase synchronous states
belong to this type of clusters.

The third possible type of multi-clusters combines
the previous two types, where the cluster can be either
of splay- or antipodal-type. These states are called
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Figure 2. Two types of multicluster states in a network
of N = 200 adaptively coupled phase oscillators (Eqs. (1)
and (2)) with di�erent parameter values � and �. (a) and
(b): Snapshots of the phases �j at t = 20000; (c) and (d):
mean frequencies h _�ji = (�(t0 + T )� �(t0))=T with
t0 = 10000, T = 10000; (e) and (f): snapshots of the
coupling matrices �ij at t = 20000. In (a), (c), and (e), a
splay-type multicluster for � = 0:2�, � = 0:15� and in (b),
(d), and (f) an antipodal-type multicluster with � = 0:2�,
� = �0:6� are presented. Other parameters are � = 0:01;
! = 1, � = 1=N .

mixed-type multi-clusters. For more details, refer to
[69,87].

The appearance of multi cluster states suggests
that certain one-cluster states serve as building blocks
for more complex multi-cluster states. Formally, a one-
cluster state is a frequency-synchronized group of phase
oscillators described by:

�i = 
t+ ai;

with collective frequency 
, relative phase shifts ai 2
[0; 2�), and i = 1; :::; N . Figure 3 shows the coupling
matrices �ij of all three possible one-cluster states
on an all-to-all network of adaptively coupled phase
oscillators (1) and (2). Already mentioned above, the
�rst two types, i.e., the splay clusters and antipodal
clusters, serve as building blocks for multi-cluster
states. The third type, shown in Figure 3(c), is called

the double-antipodal state. It consists of two groups
of antipodal phase oscillators with a �xed phase lag
between them. In contrast to splay- and antipodal
clusters, double-antipodal states are unstable for the
whole range of parameters; therefore, they are unlikely
to be found as building blocks for multi-cluster states.

4. Desynchronization of multiclusters by
random dilution of network connections

Section 3 discussed the generic appearance of the
multi-cluster states in System (1)-(2) on an all-to-all
coupled network. Based on the phase relations of
the oscillators within the clusters, we distinguished
between splay- and antipodal multi-clusters. It was
also shown that the oscillators could form groups
of strongly connected units, where the interaction
between the groups was weaker than that within the
groups. This section investigates the robustness of
multi-cluster states against the random dilution of the
underlying network topology.

This study took into consideration a network
of N = 100 adaptively coupled phase oscillators,
described by Eqs. (1) and (2). The parameters � = 0:3
and � = �0:53 were then �xed such that a multi-cluster
state emerged from random initial conditions for an all-
to-all coupled network structure. In order to implement
the dilution of links, Q links (Q � (N � 1)N) were
randomly and successively deleted by choosing a set of
Q indices (ij) randomly corresponding to the existing
links in the adjacency matrix, i.e., aij = 1. These links
are then removed, i.e., we set aij = 0. The degree of
dilution, i.e., the ratio of deleted links, is de�ned as
q = Q=(N(N � 1)).

Then, two di�erent numerical approaches were
utilized to study the e�ects of dilution: (I) System (1)-
(2) was numerically solved for 11000 time units and
q successively increased in each simulation run, where
the �nal multi-cluster state for q = 0 was set as the
initial condition for all the following simulations. This
approach was used to investigate the robustness of a
known multi-cluster state against random dilution of
links. (II) Then, a set of 100 di�erent random initial
conditions was �xed. For each q, the system dynamics
was simulated for all 100 initial conditions and 11000
time units.

Figure 4 depicts three resulting states of System
(1)-(2), obtained by the numerical simulations men-
tioned above. The coupling weights �ij are shown
together with their corresponding mean frequencies
h _�ji = (�i(t0 + T ) � �i(t0))=T for di�erent values of
q. Here, t0 = 10000 and T = 1000 were chosen. In
addition, the phases �j of the oscillators within the
biggest cluster are represented on the unit circle. In the
case of a fully coupled network (q = 0, Figure 4(a)), an
antipodal-type multi-cluster state emerges, consisting
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Figure 3. Illustration of the coupling weights �ij for all three existing types of one-cluster states in a network of N = 50
adaptively coupled phase oscillators (Eqs. (1) and (2)): (a) Splay state with � = 0:3�, � = 0:1�, (b) antipodal state with
� = 0:2�, � = �0:95�, and (c) double-antipodal state with � = 0:3�, � = �0:15�. Other parameters are � = 0:01,
� = 1=N . Adapted from [87].

Figure 4. Three multicluster states in a network of adaptively coupled phase oscillators (Eqs. (1) and (2)) for di�erent
ratios of the deleted links q. At the bottom and middle panels, the mean frequencies h _�ji = (�(t0 + T )� �(t0))=T with
t0 = 10000, T = 1000 and snapshots of the coupling weights �ij at t = 11000 are shown, respectively. The phases of the
oscillators within the biggest cluster at t = 11000 represented on the unit circle are shown at the top panel: (a) q = 0, (b)
and (c) q = 0:13 (di�erent initial conditions: (b) multicluster state of panel and (a) and (c) random initial conditions).
Other parameters are N = 100, � = 0:01, ! = 1, � = 0:3�, � = �0:53�, � = 1=N .

of three groups. The average frequencies of the oscil-
lators within each cluster are constant, as described
in Section 3. Moreover, the oscillator phases within
each cluster possess the phase di�erence of either 0 or
�. Hence, the clusters are of the antipodal type. The
smaller clusters possess a mean frequency closer to the
natural frequency ! = 1 due to their smaller size.

Figure 4(b) and (c) depict two possible states
on networks with a dilution degree (ratio of deleted
links) of q = 0:13, where the initial conditions were
chosen as the multi-cluster state of Figure 4(a) in
panel (b) and as random initial conditions in panel
(c). Of note, the white dots in the coupling matrix
represent the deleted links. The simulations showed

that despite the missing links, the oscillators could still
organize themselves in multi-clusters. The antipodal-
type multi-cluster in Figure 4(b) has a similar shape as
the multi-clusters previously observed. However, in the
case of missing links, the phases �i within the clusters
slightly spread out in order to compensate for the
heterogeneity in the network topology. The splay-type
cluster in Figure 4(c) is a di�erent type of stable state
that can emerge in System (1)-(2) for q = 0:13. Note
that in Figure 4(b) and (c), the same parameter values
are used, indicating that di�erent types of multi-cluster
patterns may emerge from random initial conditions.
Therefore, multiclusters may exhibit multistability. In
order to further investigate the robustness of multi-
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Figure 5. The robustness of multicluster states against a
random dilution of links. Collective mean frequencies h _�ji
vs the ratio of deleted links q in a network of adaptively
coupled phase oscillators (Eqs. (1) and (2)). (I)
Distribution of the mean frequencies h _�ji, where the
multicluster state obtained at q = 0 serves as the initial
condition for all simulations with q > 0 and (II)
distribution of mean frequencies averaged over 100
realizations of random initial conditions for each q. The
red lines (a){(c) mark the states shown in Figure 4. Note
h _�ji = (�j(t0 + T )� �j(t0))=T , where t0 = 10000 and
T = 1000. Parameters: N = 100, � = 0:01, ! = 1,
� = 0:3�, � = �0:53�, � = 1=N .

clusters against dilution of the connectivities, Figure 5
presents the distribution � (color coded) of the mean
frequencies h _�ji of the oscillators versus the fraction
of deleted links q. These results were obtained by
applying two numerical approaches described above.
Figure 5(I) presents the mean frequencies correspond-
ing to the numerical procedure (I) where the multi-
cluster state depicted in Figure 4(a) is set as an initial
condition. Of note, the data used for each step of q is
an average of all N oscillators. For a wide range of q,
three distinct clusters are visible. For large values of
q, where the network becomes sparse, the frequency
clusters are not clearly separated. The qualitative
shape of the initial multi-cluster state is preserved on
the networks with di�erent degrees of dilution, ranging
from fully-coupled to almost uncoupled topologies. The
number of clusters remains the same on networks with
varying numbers of links; however, the collective mean
frequencies of the oscillators adapt to the changes in
the coupling topology in a linear relation with q.

The linear dependence of the cluster frequencies
on the relative number of deleted links q can be
explained as follows. For the increasing dilution q,
each link is subject to an equal cut-o� probability.
Therefore, on average, there are (1 � q)N�(N� � 1)
links in each cluster. Furthermore, assuming that
� � 1, the collective frequency of each cluster can be
roughly approximated up to zeroth order � by 
� �
!+�

PN�
j=1 aij;�� sin(ai;��aj;�+�) sin(ai;��aj;�+�)

[69]. Consider an approximately antipodal cluster,
ai;��aj;� � 0 or �. Then, 
� � !+� sin(�) sin(�)ri;�
where ri;� =

PN�
j=1 aij;�� is the ith row sum restricted

to the �th cluster. By averaging over i = 1; :::; N�, we

end up with the approximation:


� � ! + �(1� q)(N� � 1) sin(�) sin(�): (5)

The latter expression explains the linear dependence
of the cluster frequency on the ratio of the deleted
links. Furthermore, Eq. (5) shows that the slope of the
linear relation depends on the cluster size. This �nding
is in agreement with that in Figure 5(I). Of note,
splay clusters can be treated similarly. Figure 5(II)
illustrates the distribution of collective mean frequen-
cies versus q for random initial conditions according
to the numerical procedure (II). Here, the data for
each step of q is an average of 100 numerical runs.
In this respect, the color code represents the fraction
of oscillators that lie in the corresponding frequency
band. For a wide range of q, the frequencies roughly
show three maxima of �(h _�ji), indicating three-cluster
states (see the Appendix as an example). Further,
two-cluster states of splay type, corresponding to the
fourth smaller maximum of �(h _�ji), were observed,
being located slightly above the largest maximum and
it would vanish in case q > 0:4. At the increasing
values of q, the overall frequencies increased linearly
as well and eventually converged on h _�jijq=1 = 1.
In this case, all nodes are uncoupled, oscillating with
their natural frequency of 
 = 1. These results can
be compared with those in Reference [88], where the
dynamical states on networks of adaptively coupled
phase oscillators are studied in the (�; �) parameter
space for di�erent degrees of network dilution. As
shown, splay- and antipodal-type clusters emerge in
the corresponding region of the parameter space for
all-to-all coupled networks. For decreasing numbers
of links, i.e., increasing q, the network �rst loses its
ability to reach the splay-type states and subsequently,
fails to synchronize. These �ndings suggest that the
fourth maximum in Figure 5(II) exists due to the
presence of splay-type multi-clusters since it vanishes
for q > 0:4.

The multi-cluster states described in Figure 5(I)
are visualized by showing the corresponding snapshots
of the coupling matrices �ij in Figure 6. As observed,
the multi-cluster state at q = 0 was chosen as the initial
condition for all simulations with q > 0. In agreement
with our prior observations, three clusters are visible
for densely connected networks. For increasing value
of q, which is indicative of sparser networks, the
frequency clusters dissolve in a hierarchical manner,
where clusters consisting of fewer oscillators vanish
prior to those containing a large number of oscillators.
Further, it was observed that dissolution of a cluster
started with uncoupling of the single oscillators from
the cluster and a continuous decrease in the cluster size.
This process continues until the cluster vanishes. A
similar plot corresponding to Figure 5(II) with random
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Figure 6. E�ects of the successive dilution of links on a given multicluster state. Multicluster states in a network of
adaptively coupled phase oscillators (Eqs. (1) and (2)) with a decreasing ratio of randomly deleted links q = Q=(N(N � 1)).
The multicluster state at q = 0 is used as the initial condition for all simulations with q > 0. Snapshots of the coupling
matrices �ij at t = 11000 for di�erent values of q are presented. In each panel, the oscillators are ordered according to
their mean frequency and their phases. Parameters include � = 0:3�, � = �0:53�, ! = 1, � = 0:01, � = 1=N , and N = 100.

initial conditions can be found in the Appendix. In
this section, it is shown that random dilution of the
network topology will desynchronize the multi-clusters.
As observed, System (1){(2) preserves the qualitative
shape of the multi-cluster states on random networks
of di�erent sparsity. Hence, multi-clusters are robust
against topological perturbations. Further, System
(1){(2) possesses a high degree of multistability for
diluted network topologies. In the following section,
the stability of the synchronized states is investigated
using master stability function for networks with adap-
tive couplings [60]. Given this, it was suggested that

the presence of adaptive couplings could a�ect the
stability of System (1){(2). Further, destabilization of
the phase-synchronized state has implications for the
emergence of multi-cluster states.

5. Master stability function for adaptive phase
oscillator networks

In the previous section, desynchronization of multi-
cluster states for a decreasing number of links was
discussed. It was also shown that System (1){(2)
retained the ability to form strongly coupled groups
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of oscillators in random initial conditions on networks
with an increasing degree of dilution; however, the frac-
tion of desynchronized oscillators increased in sparse
networks. Since the individual clusters in a multi-
cluster state are e�ectively uncoupled from each other,
the stability of these strongly coupled subnetworks may
play a signi�cant role in the stability of multi-cluster
states.

This section as well as the next section aim to
gain analytic insights into the stability of in-phase
synchronized states, i.e., �i = 
t; i = 1; :::; N . Note
that the in-phase synchronized states belong to the
class of antipodal states (see Section 3) and share the
same dynamical properties [69,87]. We assume that the
network topology expressed by the adjacency matrix
possesses a constant row sum r, i.e., r =

PN
j=1 aij

for all i. Following the master stability approach for
networks with adaptive coupling weights as developed
in [60], the master stability function is derived for
networks of adaptively coupled phase oscillators. This
can facilitate the separation of the e�ects of the local
node dynamics from the e�ects of adaptivity as well as
the network topology. Therefore, general conclusions
on the stability of the in-phase synchronized state
can be drawn for almost arbitrary complex network
topologies. Accordingly, the master stability approach
allows studying the interplay of nodal dynamics, adap-
tivity, and complex network structures. The approach,
further, enables us to control the stability of the
synchronized states, depending on the changes to the
coupling structure. In the following, a brief discussion
of the master stability function is provided for the
adaptive Kuramoto-Sakaguchi network (1){(2). Based
on the results obtained from [60], the stability of the
synchronous state of System (1){(2) is governed by two
linearized di�erential equations for perturbations of the
synchronous state in the new coordinates � 2 R and
� 2 R:

d
dt

�
�
�

�
=
�
�� cos(�) sin(�) �� sin(�)
��� cos(�) ��

��
�
�

�
; (6)

where � 2 C denotes all eigenvalues of the Laplacian
matrix L = rIN � A corresponding to the network
described by the adjacency matrix A. Here, IN is
the N -dimensional identity matrix. The characteristic
polynomial in � of Eq. (6) is of second degree and reads:

�2 + (�� �� cos(�) sin(�))����� sin(�+�) = 0: (7)

The master stability function is given by �(��) =
max(Re(�1);Re(�2)) where �1 and �2 are the two
solutions of the quadratic polynomial (7). Through
the master stability function, the local stability of the
in-phase state (also for the antipodal states) can be
directly obtained from the connectivity structure given
by the adjacency matrix. In particular, if there exists

at least one Laplacian eigenvalue such that �(��) > 0,
the state is locally unstable. If �(��) < 0 holds for all
Laplacian eigenvalues, the in-phase synchronous state
is locally stable. Note that with the construction of the
Laplacian matrix L, there exists always one eigenvalue
� = 0 which leads to �1 = 0 and �2 = ��. The
zero eigenvalue of the matrix in (6) corresponds to the
phase-shift symmetry of System (1){(2) and it is not
considered in the above stability condition.

In order to get an insight into the form of the
master stability function, we consider the boundary of
the region in �� parameter space that corresponds to
stable local dynamics. The boundary is given by � = i
with  2 R. Plugging this into Eq. (7), we obtain the
function:

�� = a() + ib();

with:

a() = �
2(cos� sin� � sin(�+ �))

2 cos2 � sin2 � + �2 sin2(�+ �)
;

b() =
3 cos� sin� + �2 sin(�+ �)
2 cos2 � sin2 � + �2 sin2(�+ �)

:

Hence, the boundary in the complex ��-plane is
parametrically de�ned as a cubic function of the real
value . Due to the symmetry of the master stability
function, a condition is required to observe a nontrivial
shape of the boundary; in other words, function ��()
possesses three crossings with the real axis, i.e., two
positive real solutions for b() = 0. The three crossings
are given by 1 = 0 and the real solutions 2 and
3 of 2 cos� sin� = ��2 sin(� + �). Given this,
the existence condition for three crossings as sin(� +
�)=(cos� sin�) < 0(� > 0) can be obtained. Note that
a(2) = a(3). In case there are three crossings, the
master stability function possesses a stability island in
the complex plane. The following section focuses on
the phenomenon induced by the existence of a stability
island.

6. Destabilization of synchrony by changes in
network connectivity

The emergence of stability islands in the master stabil-
ity function enables us to destabilize synchronous states
in di�erent ways. In the following, desynchronization
is demonstrated by modifying the network topology. A
similar approach was studied on non-adaptive delay-
coupled systems in [50,52]. As shown, randomly added
inhibitory links contribute to the desynchronization
transition on regular ring topologies. Then, random
network topologies were employed to extend these
studies to adaptively coupled systems.
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This study takes into account a network of adap-
tively coupled phase oscillators, described by the set of
di�erential equations (Eq. (1) and (2)). The oscillators
are assumed to have a natural frequency ! = 1. In the
following, the stability of phase-synchronized states on
networks with random adjacency matrices is investi-
gated �rst using the master stability function and sec-
ond, through numerical integration. The parameters
� and � should be chosen to ensure a stability island
for the master stability function in a complex plane.
Then, random initial conditions should be prepared,
i.e., �i(0) 2 [0; 2�) and �ij(0) 2 [�1; 1] as well as the
numerically integrated equations (Eq. (1) and (2)) with
N = 100 and t = 30000 for three di�erent random
adjacency matrices, corresponding to the directed,
connected networks with di�erent node in-degrees. In
order to guarantee the existence of the synchronized
states, we assume that the adjacency matrices have
a constant row sum r =

PN
j=1 aij . Note that this

condition is not preserved by the dilution procedure
used in Section 3. The following procedure is then
applied to construct the directed random networks. For
each node i of the N nodes, r links are randomly picked
from the set that consists of all possible links from
nodes j 6= i to node i. For the selected links, aij is set
to 1. This procedure yields a directed random network
with N nodes and a constant row sum (in-degree) r.
Of note, the row sum r de�nes the ratio of the deleted
links q = Q=(N(N�1)) = 1�r=(N�1), i.e., the degree
of dilution.

Figure 7(a), (b), and (c) show the master stability
function �(��) for the parameters � = 0:48� and
� = 0:91�, where the black dots indicate the scaled
Laplacian eigenvalues ��i of three random adjacency
matrices with di�erent row sums r. This function is
employed to determine the stability of the in-phase
synchronized state for the given coupling topology and
show the corresponding numerical results below.

For sparse random networks with r = 3 (q =
0:97), the synchronous state is stable (see Figure 7(a),
(d), (g), and (j)). The stability follows directly from
the master stability function, since all values ��i for
all Laplacian eigenvalues lie within the stable region
�(��) < 0 (blue), see Figure 7(a). In this case, all
oscillators have the same mean frequency h _�ji (see
Figure 7(g)). Moreover, the oscillators �j either share
the same phase ai � a or the antipodal phase ai �
a + �, indicating an antipodal-type cluster. In-phase
synchronous states considered by the master stability
function � belong to the class of antipodal states and
share the same local stability properties [87]. In the
case of increasing the number of links, e.g., to r = 50
(q = 0:49), some of the Laplacian eigenvalues move out
of the stable region of the master stability function into
the unstable region (yellow/red) in the complex plane.
Consequently, the in-phase synchronized state is locally

unstable (see Figure 7(b)). In this case, antipodal-
type multiclusters emerge, where the oscillators within
each cluster share a common frequency (Figure 7(h))
and have antipodal phase relations (Figure 7(e)). The
phases within the two smallest clusters spread out due
to the fact that the adjacency matrix restricted to the
clusters does not necessarily have a constant row sum.
In the case of an all-to-all coupled network with r = 99
(q = 0), the values ��i are either located at 0 or 1 (see
Figure 7(c)). Since the eigenvalues located at �� = 1 lie
in the unstable region, the in-phase synchronized state
is unstable. In this case, the emergence of an antipodal-
type multicluster is observed again (see Figure 7(f), (i),
and (l)).

This section discusses the e�ects induced by
changes in the network topology on the desynchro-
nization of the phase-synchronized state. While the
phase-synchronized state is stable for sparse networks,
it is destabilized for an increasing number of links. We
have described this behavior by means of the master
stability function for networks with adaptive coupling
weights. Modifying the adjacency matrix a�ects the
Laplacian eigenvalues �i and consequently, changes
the largest Lyapunov exponents of the network. We
use the presence of bounded stable regions (stability
islands in the complex plane) of the master stability
function to successively shift the Laplacian eigenvalues
from the stable into the unstable regime by changing
the network connectivity. We show that the result-
ing desynchronization has strong implications for the
emergence of multicluster states.

7. Discussion

In the previous sections, we have investigated the emer-
gence of cluster synchronization on networks of adap-
tively coupled Kuramoto-Sakaguchi oscillators with
complex topologies. Speci�cally, we have focused on
the robustness of the multifrequency cluster states
against diluted connectivities. We have demonstrated
the inuence of topological changes on these states.
Further, we have complemented these studies by an
analytical approach describing the stability of phase-
synchronized states. Investigating the master stability
function for adaptive Kuramoto-Sakaguchi networks
allowed us to study the interplay among nodal dynam-
ics, adaptivity, and network topology. Accordingly, it
was illustrated that the existence of adaptive coupling
weights might dramatically change the synchronization
behavior with regard to network topology.

In Section 3, previous �ndings on the emergence
of multi-frequency-clusters on networks of adaptively
coupled phase oscillators were reviewed and a notation
describing the generic appearance of cluster states was
introduced. It was numerically illustrated for all-to-
all coupled networks that starting from random initial
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Figure 7. The interplay between network dynamics and topology. Dynamics in a network of N = 100 adaptively coupled
phase oscillators (Eqs. (1) and (2)) with random adjacency matrices with di�erent constant row sums r =

PN
j=1 aij , and

random initial conditions �i(0) 2 [0; 2�g and �ij(0) 2 [�1; 1] for i; j = 1; :::; N . The simulations results are shown for the
three values ((a), (d), (g), and (j)) r = 3, ((b), (e), (h), and (k)) r = 50, and ((c), (f), (i), and (l)) r = 99. The panels
show: ((a), (b), and (c)) The master stability function color coded together with ��i, where �i denotes the N Laplacian
eigenvalues corresponding to each adjacency matrix; the inset in (a) depicts a blow-up of the marked area, where
eigenvalues lie close to the border of the stability island; (d), (e), and (f) show the snapshots of the oscillator phases �j at
t = 30000; (g), (h), and (i) present the mean frequencies h _�ji = (�j(t0 + T )� �j(t0))=T; where t0 = 25000 and T = 5000;
(j), (k), and (l) show the snapshots of the coupling weights �ij , where the coupling weights are color coded. The oscillators
are ordered according to their mean frequencies h _�ji and subsequently, their phases �j . Other parameters are � = 0:48�;
� = 0:91�, ! = 1, � = 1=N , and � = 0:01.

conditions, these systems could reach di�erent types
of multicluster states such as splay- and antipodal-
type multiclusters. These states have previously been
studied on all-to-all coupled networks [63,69,87], nonlo-
cally coupled rings [89], multiplex [46,85], and random

networks [88] with adaptive coupling weights. We
extended these studies towards randomly diluted cou-
pling topologies. In order to investigate the inuence
of topological changes upon these states, the adjacency
matrix describing the underlying time-independent
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coupling topology was modi�ed. For this purpose, ran-
dom adjacency matrices, representing directed random
network topologies with varying degrees of dilution,
were constructed.

As was shown in Section 4, the emergence of par-
tially synchronized states was maintained on random
networks with a small number of links. The emergence
of di�erent types of multicluster states including splay-
type multiclusters was observed on densely coupled
networks (q = 0:13 in Figure 4(c)). This result is in
agreement with the �ndings presented in [88], where
the dynamical states on networks of adaptively coupled
phase oscillators were studied in the (�; �) parameter
space for di�erent network sparsity. Based on the nu-
merical investigations, the multicluster states observed
were multistable with regard to initial conditions,
meaning that di�erent multiclusters might emerge in
di�erent initial conditions. By depicting asymptotic
states with di�erent values of the ratio of deleted links
q, it was illustrated that the qualitative shape of a
given multicluster state was preserved on networks of
di�erent degrees of dilution. The number of clusters
remains the same for a wide range of q; however, the
frequencies of the oscillators adapt to the changes in
the coupling topology in a linear relation with q. The
latter e�ect has been analytically described.

Since in-phase synchronous and antipodal states
have the same local stability properties, we have
extended our investigations by an analytical approach
describing the stability of in-phase synchronized states
in Section 5. The master stability function for net-
works of Kuramoto-Sakaguchi oscillators with adaptive
coupling weights was analyzed using novel methods
presented in [60]. The emergence of bounded regions
was observed which would lead to stable synchronous
dynamics in the master stability function, representing
stability islands in the complex plane. We analytically
described the stability border and provided a condition
for the emergence of stability islands. Due to the shape
of these stability islands, it is possible to destabilize in-
phase synchronized states by increasing the number of
links within the network. Therefore, such destabiliza-
tion had implications for the emergence of multicluster
states. Upon tailoring the system con�gurations such
that a stability island would emerge in the master
stability function, we observed stable multicluster
states emerging from random initial conditions for
those topological con�gurations with unstable in-phase
synchronized states. In the previous work [60], it was
shown that such a counterintuitive desynchronization
e�ect was also possible as the overall coupling strength
increased.

8. Conclusion

The present study managed to show the emergence of

multi-cluster states on networks of adaptively coupled
Kuramoto-Sakaguchi oscillators with random coupling
topologies. Owing to the adaptivity of the cou-
pling weights, the individual oscillators could adapt
their frequencies and form strongly coupled groups
of frequency-synchronized units. In addition, numer-
ical and analytical investigations revealed how ran-
dom coupling topologies could a�ect the emergence
of these synchronization patterns. While the struc-
tural shape of multi-clusters remained the same, the
overall synchrony in a network declined by decreasing
the number of links since more and more oscillators
would decouple from the system and exhibit incoherent
dynamics. Nonetheless, this study showed that by
means of the master stability function, some network
con�gurations allowed for stable in-phase synchronized
dynamics for very sparse random networks. While
our investigations were restricted to networks with
uniform degree distributions, they might be generalized
to more realistic network models such as small-world
or scale-free networks. The master stability approach
served as a universal tool, describing the stability of
in-phase synchronized states. It was demonstrated
that the destabilization of fully synchronized states
had implications for the emergence of multicluster
states. In order to obtain a more complete picture, this
approach may be extended to splay-type synchrony.
Our �ndings on the e�ects of diluted connectivity upon
multicluster states illustrated the complex interplay be-
tween topology and adaptivity. By applying the master
stability approach, it was clari�ed that the adaptive
properties of a network could have a huge impact on
the stability of fully and partially synchronized states
since the presence of adaptivity provided a feedback
mechanism that could change the stability; intuitively,
this is similar to an additional e�ective phase lag.
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Appendix

Figure 4(b) and (c) indicate that system (1){(2) is
multistable with regard to initial conditions. In other
words, depending upon the initial state, di�erent
realizations of multicluster states can emerge. As
shown in Figure A.1, the coupling matrices �ij are
given at di�erent values of q. Note that the presented
coupling matrices correspond to the dynamics shown
in Figure 5(II).
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Figure A.1. Multicluster states in a network of adaptivley coupled phase oscillators (Eqs. (1) and (2)) with an increasing
ratio of randomly deleted links q and random initial conditions. Snapshots of the coupling matrices �ij at t = 11000 for
di�erent values of q are presented. In each panel, the oscillators are ordered according to their average frequency and
subsequently the phases. Parameters are � = 0:3�, � = �0:53�, ! = 1, � = 0:01, N = 100.
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