References
[1] Verbist, G., Weaire, D., and Kraynik, A.M. “The foam drainage equation”, J. Phys. Condens. Matter, 83, pp. 715-731 (1996).
[2] Prud’homme, R.K. and Khan S.A. (Eds.), Foams: Theory, Measurements and Applications, Dekker, New York, (1996).
[3] Weaire, D.L. and Hutzler, S., The Physics of Foams, Oxford University Press, Oxford, (2000).
[4] Helal, M.A. and Mehanna, M.S. “The tanh method and Adomian decomposition method for solving the foam drainage equation”, Appl. Math. Comput., 190, pp. 599-609 (2007).
[5] Fereidoon, A.H., Yaghoobi, H., and Davoudabadi, M.R. “Application of the homotopy perturbation method for solving the foam drainage equation”, Int. J. Differ. Equ., 2011, Article ID 864023 (2011).
[6] Yas¸ar, E. and O¨ zer, T. “On symmetries, conservation laws, and invariant solutions of the foam-drainage equation”, Int. J. Nonlin. Mech., 46(2), pp. 357-362 (2011).
[7] Nadjafikhah, M. and Chekini, O. “Conservation law and Lie symmetry analysis of foam-drainage equation”, AUT J. Math. Com., 2(1), pp.37-44 (2021).
[8] Darvishi, M.T. and Khani, F. “A series solution of the foam drainage equation”, Comput. Math. Appl., 58, pp. 360-368 (2009).
[9] Khani, F., Hamedi-Nezhad, S., Darvishi M.T., et al. “New solitary wave and periodic solutions of the foam drainage equation using the Exp-function method”, Nonlinear Anal.: Real World Appl., 10, pp. 1904-1911 (2009).
[10] Khan, Y. “A method for solving nonlinear time-dependent drainage model”, Neural Comput. and Applic., 23, pp. 411-415 (2013).
[11] Parand, K. and Delkhosh, M. “An efficient numerical method for solving nonlinear foam drainage equation”, Indian J. Phys., 92(2), pp. 231-243 (2018).
[12] Wang, L. and Qian, Z. “A meshfree stabilized collocation method (SCM) based on reproducing kernel approximation”, Comput. Methods Appl. Mech. Engrg., 371, Article ID 113303 (2020).
[13] Wang, L.,Wang, Z., and Qian, Z. “A meshfree method for inverse wave propagation using collocation and radial basis functions”, Comput. Methods Appl. Mech. Engrg., 322(1), pp. 311-350 (2017).
[14] Izadi, M. “A comparative study of two Legendre-collocation schemes applied to fractional logistic equation”, Int. J. Appl. Comput. Math., 6(3), Article ID 71 (2020).
[15] Izadi, M. and Afshar, M. “Solving the Basset equation via Chebyshev collocation and LDG methods, J. Math. Model., 9(1), (2021) 61-79.
[16] Izadi, M. “Comparison of various fractional basis functions for solving fractional-order logistic population model”, Facta Univ. Ser. Math. Inform., 35(4), pp. 1181-1198 (2020).
[17] Izadi, M. and Srivastava, H.M. “Numerical approximations to the nonlinear fractional-order Logistic population model with fractional-order Bessel and Legendre bases”, Chaos Solitons Fract., 145, pp. 1-11 Article ID 110779 (2021).
[18] Krall, H.L. and Frink, O. “A new class of orthogonal polynomials: The Bessel polynomials”, Trans. Amer. Math. Soc. 65, pp. 100-115 (1949).
[19] Izadi, M. and Cattani, C. “Generalized Bessel polynomial for multi-order fractional differential equations”, Symmetry, 12(8), Article ID 1260 (2020).
[20] Izadi, M. “Numerical approximation of Hunter-Saxton equation by an efficient accurate approach on long time domains”, U.P.B. Sci. Bull. Series A, 83(1), pp. 291-300 (2021).
[21] Izadi, M. and Cattani, C. “Solution of nonlocal fractional-order boundary value problems by an effective accurate approximation method”, Appl. Ana. Optim., 5(1), pp. 29-44 (2021).
[22] Izadi, M. and Srivastava, H.M. “An efficient approximation technique applied to a non-linear Lane-Emden pantograph delay differential model”, Appl. Math. Comput., 401, pp. 1-11 Article ID 126123 (2021).
[23] Izadi, M., Seifaddini, M. Afshar, M. “Approximate solutions of a SIR epidemiological model of computer viruses”, Tbilisi Math. J., 14, (2021).
[24] Arbabi, S., Nazari A., and Darvishi, M.T. “A semi-analytical solution of foam drainage equation by Haar wavelets method”, Optik, 127, pp. 54-43 (2016).
[25] Khan, M. and Gondal, M.A. “A new analytical solution of foam drainage equation by Laplace decomposition method”, J. Adv. Res. Differ. Equ., 2, pp. 53-64(2010).