References:
[1] Jaffe, A., Miller, A., Andersen, E., et al. "Evaluating competitive game balance with restricted play", 8th AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, Stanford, California, U. S., pp. 26-31 (2012).
[2] Lopez, S.J., Snyder, C.R. "Oxford handbook of positive psychology", Oxford Library of Psychology, Oxford University Press, UK (2009).
[3] E. Adams. "Fundamentals of game design", Pearson Education, New York, U.S. (2014).
[4] Kavanagh, W.J., Miller, A., Norman, G, et al. "Balancing turn-based games with chained strategy generation", IEEE Transactions on Games (2019).
[5] Pérez, L.J.F., Calla, L.A.R., Valente, L., et al. "Dynamic game difficulty balancing in real time using evolutionary fuzzy cognitive maps", 14th Brazilian Symposium Conference on Computer Games and Digital Entertainment (SBGames), Rio de Janeiro, Brazil, pp. 24-32 (2015).
[6] Silva, M.P., do Nascimento Silva, V. and Chaimowicz, L. "Dynamic difficulty adjustment through an adaptive AI" 14th Brazilian Symposium Conference on Computer Games and Digital Entertainment (SBGames), Rio de Janeiro, Brazil, pp. 173-182 (2015).
[7] Yu, X., He, S., Gao, Y., et al. "Dynamic difficulty adjustment of game AI for video game Dead-End", 3rd International Conference on Information Sciences and Interaction Sciences, Chengdu, China, pp. 583-587 (2010).
[8] Bosc, G., Tan, P., Boulicaut, J.F., et al. "A pattern mining approach to study strategy balance in RTS games" IEEE Transactions on Computational Intelligence and AI in Games, 9(2), pp. 123-132 (2017).
[9] Makin, O., Bangay, S. "Orthogonal analysis of StarCraft II for game balance", Australasian Computer Science Week Multiconference, Geelong, Australia, Article No. 30 (2017).
[10] Schell, J. "The Art of Game Design: A book of lenses", 2nd Edn, AK Peters/CRC Press, Florida, U.S. (2014).
[11] Karavolos, D., Liapis, A. and Yannakakis, G. "Learning the patterns of balance in a multi-player shooter game", 12th International Conference on the Foundations of Digital Games, New York, U. S., Article No. 70 (2017).
[12] Olesen, J. K., Yannakakis, G. N. and Hallam, J. "Real-time challenge balance in an RTS game using rtNEAT", 2008 IEEE Symposium On Computational Intelligence and Games, Perth, Australia, pp. 87-94 (2008).
[13] Morosan, M. and Poli, R. "Evolving a designer-balanced neural network for Ms PacMan", 9th Computer Science and Electronic Engineering (CEEC), Colchester, England, pp. 100-105 (2017).
[14] Bangay, S. and Makin, O. "Generating an attribute space for analyzing balance in single unit RTS game combat", 2014 IEEE Conference on Computational Intelligence and Games, Dortmund, Germany, pp. 1-8 (2014).
[15] Uriarte, A. and Ontanón, S. "Psmage: Balanced map generation for starcraft", 2013 IEEE Conference on Computational Inteligence in Games (CIG), Niagara Falls, Canada, pp. 1-8 (2013).
[16] Goodfellow, I., Pouget-Abadie, J., Mirza, M., et al. "Generative adversarial nets", Neural Information Processing Systems, Montreal, Canada, pp. 2672-2680 (2014).
[17] Liu, G.C., Wang, J., Youn, G. and Kim, J. "Multi-scale multi-class conditional generative adversarial network for handwritten character generation" The Journal of Supercomputing, 73(12), pp. 1-19 (2017).
[18] Tran, L., Yin, X. and Liu, X. "Disentangled representation learning gan for pose-invariant face recognition", Computer Vision and Pattern Recognition, 3(6), pp. 1415-1424 (2017).
[19] Song, F. Y. Z. S. and Xiao, A. S. J. "Construction of a large-scale image dataset using deep learning with humans in the loop", arXiv preprint arXiv:1506.03365 (2015).
[20] Mathieu, M., Couprie, C. and LeCun, Y. "Deep multi-scale video prediction beyond mean square error", arXiv preprint arXiv:1511.05440 (2016).
[21] Baddar, W.J., Gu, G., Lee, S., et al. "Dynamics transfer GAN: generating video by transferring arbitrary temporal dynamics from a source video to a single target image", arXiv preprint arXiv:1712.03534 (2017).
[22] Yang, L.C., Chou, S.Y. and Yang, Y.H. "MidiNet: A convolutional generative adversarial network for symbolic-domain music generation", 18th International Society for Music Information Retrieval Conference (ISMIR’2017), Suzhou, China, pp. 1-8 (2017).
[23] Sutton, R.S. and Barto, A.G. "Reinforcement Learning: An Introduction", MIT Press, Cambridge, England (2018).
[24] Zhang, C., Vinyals, O., Munos, R., et al. "A study on overfitting in deep reinforcement learning", arXiv preprint arXiv: 1804.06893 (2018).
[25] Summerville, A.J., Snodgrass, S., Mateas, M., et al. "The vglc: The video game level corpus", arXiv preprint arXiv:1606.07487 (2016).
[26] Volz, V., Schrum, J., Liu, J., et al. "Evolving Mario Levels in the Latent Space of a Deep Convolutional Generative Adversarial Network", arXiv preprint arXiv:1805.00728 (2018).
[27] Bontrager, P., Roy, A., Togelius, J., et al. "DeepMasterPrint: Fingerprint Spoofing via Latent Variable Evolution", arXiv preprint arXiv:1705.07386 (2017).
[28] Hansen, N., Müller, S.D. and Koumoutsakos, P. "Reducing the time complexity of the derandomized evolution strategy with covariance matrix adaptation (CMA-ES)", Evolutionary Computation, 11(1), pp. 1-18 (2003).
[29] Shaker, N., and Togelius, J., and Nelson, M.J. "Procedural content generation in games", Springer International Publishing, Switzerland (2016).
[30] Togelius, J., Yannakakis, G. N., Stanley, K.O., et al. "Search-based procedural content generation: A taxonomy and survey", IEEE Transactions on Computational Intelligence and AI in Games, 3(3), pp. 172-186 (2011).
[31] McCormack. J. "Interactive evolution of L-system grammars for computer graphics modelling", Complex Systems: From Biology to Computation, ISO Press (1993).
[32] Mizuno, K., Nishihara, S. "Constructive generation of very hard 3-colorability instances", Discrete Applied Mathematics, 156(2), pp. 218-229 (2008).
[33] Belhadj, F. "Terrain modeling: a constrained fractal model", 5th International Conference on Computer graphics, Virtual reality, Visualisation and Interaction, Grahamstown, South Africa, pp. 197-204 (2007).
[34] Papageorgiou, E. I. and Salmeron, J. L. "A review of fuzzy cognitive maps research during the last decade", IEEE Transactions on Fuzzy Systems, 21(1), pp. 66-79 (2013).
[35] Kyriakarakos, G., Dounis, A.I., Arvanitis, K.G., et al. "Design of a fuzzy cognitive maps variable-load energy management system for autonomous PV-reverse osmosis desalination systems: A simulation survey", Applied Energy, 187, pp. 575-584 (2017).
[36] Back, T. "Evolutionary Algorithms in Theory and Practice: Evolution Strategies, Evolutionary Programming, Genetic Algorithms", Oxford University Press (1996).
[37] Crepinšek, M., Liu, S. H. and Mernik, M. "Exploration and exploitation in evolutionary algorithms: A survey", ACM Computing Surveys, 45(3), pp. 1-33 (2013).
[38] Morosan, M., and Poli, R. "Automated game balancing in Ms. PacMan and StarCraft using Evolutionary Algorithms", European Conference the Applications of Evolutionary Computation, Amsterdam, The Netherlands, pp. 377-392 (2017).
[39] Espejo, P. G., Ventura, S. and Herrera, F. "A survey on the application of genetic programming to classification", IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 40(2), pp. 121-144 (2010).
[40] Gunturu, M., Shakarad, G.N., and Singh, S. "Fitness Function to find Game Equilibria using Genetic Algorithms", 6th International Conference on Advances in Computing, Communications and Informatics (ICACCI'17), University in Manipal, India, pp. 1531-1534 (2017).
[41] Xia, W., and Anand, B. "Game balancing with ecosystem mechanism", International Conference on Data Mining and Advanced Computing (SAPIENCE), Ernakulam, India, pp. 317-324 (2016).
[42] Hendrikx, M., Meijer, S., Van Der Velden J, et al. "Procedural content generation for games: A survey", ACM Transactions on Multimedia Computing, Communications, and Applications (TOMM), 9(1), pp. 1-24 (2013).
[43] Kennedy, J. "Particle swarm optimization", Encyclopedia of Machine Learning, Springer, U. S., (2011).
[44] Giusti, R., Hullett, K. and Whitehead, J. "Weapon design patterns in shooter games", first Workshop on Design Patterns in Games, Carolina, U. S., Article No. 3 (2012).
[45] Cachia, W., Liapis, A. and Yannakakis, G.N. "Multi-level evolution of shooter levels", 11th Artificial Intelligence and Interactive Digital Entertainment Conference, California, U.S., pp. 115-121 (2015).
[46] Giacomello, E., Lanzi, P.L. and Loiacono, D. "DOOM level generation using generative adversarial networks", arXiv preprint arXiv:1804.09154 (2018).
[47] Filatov, A., Filatov, A., Krinkin, K., et al. "2D SLAM quality evaluation methods", arXiv preprint arXiv:1708.02354 (2017).
[48] Ponti, M.A., Ribeiro, L.S., Nazare, T.S., et al. "Generative Adversarial Networks", Presentation Content Inspired by Ian Goodfellow’s Tutorial on NIPS (2016).
[49] Calderone, D. and Sastry, S.S. "Markov decision process routing games", 8th International Conference on Cyber-Physical Systems (ICCPS), Pittsburgh, U. S., pp. 273-280 (2017).
[50] Van Hasselt, H., Guez, A. and Silver, D. "Deep reinforcement learning with double Q-Learning", 30th Artificial Intelligence Conference, Phoenix, Arizona, U.S., pp. 2094-2100 (2016).
[51] Kulkarni, T.D., Narasimhan, K., Saeedi, A., et al. "Hierarchical deep reinforcement learning: Integrating temporal abstraction and intrinsic motivation", Advances in Neural Information Processing Systems Conference, Barcelona, Spain, pp. 3675-3683 (2016).
[52] Cloud Compuing Center, Iran University of Science and Technology, Available: https://ccc.iust.ac.ir/
[53] He, F.S., Liu, Y., Schwing, A.G., et al. "Learning to play in a day: Faster deep reinforcement learning by optimality tightening", arXiv preprint arXiv:1611.0160 (2016).
[54] Berner, C., Brockman, G., Chan, B., et al. "Dota 2 with large scale deep reinforcement learning", arXiv preprint arXiv:1912.06680 (2019).