
Scientia Iranica D (2021) 28(3), 1497{1514

Sharif University of Technology
Scientia Iranica

Transactions D: Computer Science & Engineering and Electrical Engineering
http://scientiairanica.sharif.edu

A dynamic balanced level generator for video games
based on deep convolutional generative adversarial
networks

M. Rajabi, M. Ashtiani�, B. Minaei-Bidgoli, and O. Davoodi

Computer Games Research Laboratory, School of Computer Engineering, Iran University of Science and Technology, Tehran, Iran.

Received 31 October 2019; received in revised form 20 August 2020; accepted 16 November 2020

KEYWORDS
Generative adversarial
networks;
Dynamic di�culty
adjustment;
Reinforcement
learning;
Video games;
Game balance.

Abstract. In the gaming industry, creating well-balanced games is one of the major
challenges developers are currently facing. Balance in games has di�erent meanings
depending on the game type. But, most existing de�nitions are de�ned from ow theory.
In this research, Generative Adversarial Networks (GANs) have been used to automatically
create balanced levels. In the proposed work, a level of a 2D platformer game is considered
as a picture and is fed to the network. The levels are randomly created while adhering to a
set of balance requirements. Those levels that can be solved with the help of an agent using
reinforcement learning in the number of tries set by designers are given as input data to the
network. Finally, the network automatically generates new balanced levels and then, the
levels are checked to see if they have the game's minimum necessary requirements and also
to check if they can be solved by the reinforcement learning agent. The best performing
network is then selected for the level generation. In the series of performed evaluations, it
is shown that after the training process, the proposed approach is capable of generating
levels that are well-balanced with considerable accuracy.
© 2021 Sharif University of Technology. All rights reserved.

1. Introduction

In the game development process and, especially, game
design, balance is one of the most di�cult and time-
consuming activities [1]. As Ernest Adams in his well-
known book `Fundamentals of game design' has stated:
\To be enjoyable, a game must be balanced well{it
must be neither too easy nor too hard, and it must
feel fair, both to players competing against each other
and to the individual player on his own." [2] This
de�nition is inspired by the ow theory introduced by

*. Corresponding author. Tel/Fax: +98 21 73021480
E-mail addresses: morteza rajabi@alumni.iust.ac.ir (M.
Rajabi); m ashtiani@iust.ac.ir (M. Ashtiani);
b minaei@iust.ac.ir (B. Minaei-Bidgoli);
omiddavoudi@cmail.carleton.ca (O. Davoodi)

doi: 10.24200/sci.2020.54747.3897

Mihaly Csikszentmihalyi, a famous psychologist [3]. He
hypothesized that a person's skill and the di�culty of
a task interact with a result of cognitive and emotional
states. Due to the diversity of video game styles, bal-
ance in games is de�ned in di�erent ways. For example,
in turn-based games, designers tend to balance the
game in order to make fairness in the win-rate [4] or, in
other games, designers tend to adjust the di�culty of
passing levels and balance them dynamically [5{7]. In
strategy games, designers try to �nd the unbalanced
behaviors of the players to prevent the formation of
dominant winning strategies [8]. In general, and as
a widely used de�nition, the meaning of balance in a
video game is that playing the game and passing the
levels by the player does not go beyond the framework
of what the game designer has imagined or intended to
happen [9,10].

Recently, a large amount of research has been



1498 M. Rajabi et al./Scientia Iranica, Transactions D: Computer Science & ... 28 (2021) 1497{1514

performed on creating balance in computer games.
Bosc et al. [8], Karavolos et al. [11], Olesen et al. [12],
Morosan and Poli [13], Bangay and Makin [14] and
Uriarte and Ontan�on [15] have all tried to address this
issue using di�erent approaches. Research based on
manual human-based decision making is more accu-
rate compared to automatic balanced level generators.
However, this system being time-consuming and error-
prone has encouraged researchers to explore other
methods in which an automated intelligent algorithm
plays an essential role. These methods are often faster
than the manual level creation process in detecting
and �xing bugs in the created levels. But, mistakes
may still occur when the human expert wants to
choose the proper parameters and settings for the level
generation algorithm. Thus, in the end, human-error
may manifest itself in another form, impacting the
balance of the created level. In this paper, a method is
proposed where the power of recently introduced deep
convolutional Generative Adversarial Networks (GAN)
is leveraged [16]. Currently, deep convolutional GANs
are gaining signi�cant success in the �eld of image
processing. The general similarities and the potential
mapping between these two domains was a motivation
to use these networks for the automatic generation of
balanced game levels.

To this aim, a method for balancing video games
using deep convolutional GANs is proposed, in which
the map of the game, as well as the corresponding
parameters, will be automatically determined without
any human intervention. The way these networks work
in the �eld of image processing is that they are fed
a number of images as input. Then, after the training
steps are completed, they generate new images (i.e. not
existing in the training input set) that are similar to
the input images. Of course, GANs have found many
other useful application domains as well. For example,
GANs have been successfully applied in handwritten
digit generation [17], human face creation [18], and
even creating bedroom layouts [19]. GANs have also
been employed in the �eld of video and sound analysis
such as frame prediction in videos [20,21] and sound
generation [22].

To obtain the initial data, a basic level generator
was implemented that randomly generated the levels
without considering whether the level would be solvable
or not. To e�ectively use GAN, one needs a huge
amount of input data. If a human expert was assigned
to determine whether the game levels are solvable or
not in a manual process, it would take a very long
time to do so, making the approach almost impracti-
cal. Therefore, reinforcement learning approaches have
been used [23,24] to simulate the human play process.
Then, after performing the repetitions, a large number
of solvable levels are generated and given as input to
the GAN. Subsequently, the network is prepared to

build levels that have well-known features by specifying
and changing various parameters. In summary, the
following are the major contributions of the proposed
approach:
1. Providing a metric for evaluating di�erent proce-

dural level generation approaches and especially
GAN-based approaches. To the best of the authors'
knowledge, there is no such metric and evaluation
mechanism in the literature yet and, usually, the
evaluation is performed by a human operator using
a manual evaluation process.

2. Introducing an approach for random balanced level
generation using deep convolutional GANs. The
solvability of the level is determined using a rein-
forcement learning agent allowing the level designer
to de�ne the requirements for a balanced level
and automatically generate such levels without any
human involvement.

3. Leveraging the power of reinforcement learning
approaches to determine the level di�culty and
the adherence of the created levels to the balance
requirements speci�ed by the level designer.

In the remainder of this paper and in Section 2,
the related work of this research will be reviewed. In
Section 3, the background knowledge required for the
proposed approach is given. In Section 4, the proposed
model for automatic balanced level generation using
GANs will be introduced. In Section 5, the results
of the evaluation of the proposed method are given.
Finally, the paper concludes in Section 6.

2. Related work

A variety of research has been performed in past years
on automatic game balancing and dynamic di�culty
adjustment. In this section, the related work of the
research in this paper will be reviewed and their
strengths and weaknesses analyzed.

In one of the �rst attempts to use GANs in the
context of game level generation, Volz et al. used the
Mario game levels [25] to investigate the possibility
of using GANs for generating new levels [26]. For
doing this, the authors created pre-designed levels,
formatted them in 28*14 windows and fed them to the
GAN. Then, the generative network will output the
new levels. After the creation of the new levels, the
authors have used an A� agent used in the Mario AI
Competition in 2009 to determine the solvability of the
levels. In this research, latent variable evolution [27]
is used to investigate how latent GAN vectors can be
evolved through a �tness-based approach in the context
of level generation. Also, a CMA-ES [28] strategy is
used to evolve the latent vector.

In another work, Shaker et al., aggregated many
recent approaches to procedural content generation in



M. Rajabi et al./Scientia Iranica, Transactions D: Computer Science & ... 28 (2021) 1497{1514 1499

computer games [29]. Di�erent approaches such as
search-based techniques [30], L-systems [31], construc-
tive generation [32] and Fractal methods [33] are inves-
tigated in a wide range of game genres, such as card-
games and 2D platformer games. Besides the numerous
advantages that each of these approaches provides, a
common downside is the role of human operators to
hard-code the knowledge of content creation for every
speci�c context. This is indeed not the case in the
approach taken in this paper, where domain knowledge
is created using a reinforcement learning approach.

Similarly, P�erez et al. researched the mechanisms
to create balanced AI in video games [5]. The challenge
they are tackling is to create a compelling experience
for the professional, as well as novice, players of a
2D platformer game. Using a compelling experience,
the authors illustrate that the new and novice players
should not leave the game because of its high di�culty
and the professional players because of its simplicity.
The method they have used in their study is to dynam-
ically change the parameters of the game such as player
speed, number of obstacles and so on. These changes
will dynamically occur according to how the player
plays the game. In this study, a runner 2D platformer
game was designed. Then, di�erent game parameters
such as speed, type, and cycle of obstacles were linked
together with the help of evolutionary Fuzzy Cognitive
Maps (FCM) [34,35]. In this research, the parameters
are manually linked together by the authors in a pre-
determined way. The simplicity and soundness of the
proposed approach aside, the extraction of inuential
parameters in the level and determining their impact
on the di�culty of the game is a challenging task for
the level designer and is prone to much human error. In
addition, creating the predetermined inuence factors
and setting their correct coe�cient degree is not a
simple job and requires an extensive amount of trial
and error by the human operator.

In another interesting work, Morosan et al. used
the class of evolutionary algorithms [36,37] in order
to �nd the values of the parameters leading to game
balance [38]. This algorithm is a subclass of the
genetic algorithm [39]. In this work, by de�ning the
�tness function [40] (a function of player's winning
rate and the amount of di�erence between the new
parameters and the old), the parameters of the game
will dynamically change to reach the balance the game
designer has desired. In this research, the game
designer �rst chooses the expected winning rate of the
level. The Pacman game is tested as a sample. The
game was simulated for a large number of repetitions
using evolutionary genetic algorithms. The winning
rate value of the new parameters compared with the
initial parameters was recorded. According to the
balance function formula, the experimental values that
had a smaller di�erence with the initial values, as well

as a winning rate that was nearly expected, are selected
as the new balanced parameters. After the successful
results in the Pacman game, these experiments were
also examined in the Star Wars game and achieved
similarly satisfying results. The use of the genetic
algorithm in this study causes balanced values to be as
close as possible to the values that the designer expects.
However, the selection of parameters by humans may
cause many errors. For example, a parameter that
does not have a signi�cant e�ect on the balance of the
game may mistakenly a�ect the evolution process and
create a signi�cant impact on the accuracy of the newly
modi�ed parameters.

Xia et al. have also researched the area of game
balance using the procedural content generation tech-
nique [41] (A similar approach is also taken by [42]).
They have used this method on a game designed with
the Unity3D engine to evaluate their research. The
game is a two-dimensional shooting game, in which the
player is attacked by several enemy types. When the
player starts the game, their Mana is 0. Therefore,
the Mana left to the player at the end of each turn
(which can be positive or negative) is considered as an
o�set value. The aim of this research is to �nd a way
wherein at the end of each turn, the player ends up
with zero Mana points. This is performed with the
help of the PSO [43] and dynamic behavior-changing
[34] techniques. Although the proposed approach is
successful in creating balance in a well-structured way,
the approach is time-consuming to implement and
learn.

In another research line, Silva et al. investigated
the dynamic di�culty adjustment based on the players'
behavior type [6]. The DOTA game has been used for
this research. As the �rst step, a general gameplay
pattern of di�erent players is extracted. From this
pattern, it is pointed out that the complexity of the
game for novice players causes them to leave the game.
Also, the simplicity of the game for professional players
makes them get bored quickly. Therefore, the authors
have tried to set up a strategy that adjusts the di�culty
level of the game according to each individual player.
For example, if the player is a beginner, the di�culty
level of AI would decrease to some extent so that the
player would be either winning or getting defeated in
a balanced manner. To evaluate the performance of
this research, a number of features have been extracted
from the game and then a relationship for evaluation
has been introduced. It is shown that the approach can
exibly change the di�culty level of the game based on
the players' behavior. Of course, creating multiple AI
scenarios and triggering each of them based on a certain
condition requires extensive and accurate AI design.

In the very limited research where deep neural
networks have been used, Karavolos et al. have used
this method to balance the levels and parameters of



1500 M. Rajabi et al./Scientia Iranica, Transactions D: Computer Science & ... 28 (2021) 1497{1514

a First-Person Shooter (FPS) game [11]. Adjustable
parameters in this study are gameplay maps as well
as the game's weapon parameters [44,45]. The idea
behind this research is to use deep neural networks
to detect balanced levels. For doing so, the game
designer determines the map of a level along with
the parameters of the weapons. Then, the neural
network will comment on whether it is balanced or not.
The strength of this study is that, after the learning
stage and at a high speed, the network recognizes
the designed levels and tags them as balanced or
unbalanced. But, it still requires a human operator
at several stages in the process (i.e. feature extraction,
network parameter design and so on).

From the very little research that has applied ba-
sic GAN as its method of level generation, Giacomello
et al. used such networks to generate procedural con-
tent [46]. The required data for the neural network
are obtained through human-made levels and stored
as a WAD �le. WAD format �les include all the
level's information. In order to evaluate the results,
the authors used the SLAM algorithm [47]. But, by
reviewing the body of research performed in the �eld
of GANs, it can easily be inferred that most of these
studies are conducted with a much larger number of
input data compared to this research. So, it seems
that the volume of data in this study, due to the size
of the images and the number of features, is forcibly
limited to a very low amount.

In another research, Morosan and Poli investi-
gated balancing in the PacMan game [13]. Designers
have a set of goals and rules in their minds that they
wish to observe in the game. Because of that, a useful
tool for game designers has been presented for use, in
order to turn the designers' vision of a game into reality
as accurately and easily as possible. Neural networks
and genetic algorithms have been used in order to
generate agents of various skills and this is particularly
valuable for cases where no pre-existing agent exists.

Bangay and Makin undertook research regard-
ing achieving balance in a large real-time strategy
game [14]. They proposed an attribute space repre-
sentation as a common framework for reasoning about
balance in the combat scenarios found in these games.
The typical attributes of range, speed, health, and
damage have been used in this work. For measuring
balance in this type of game, authors have paid
attention to the health of each unit at the end of the
game and have calculated the di�erence between each
unit's health (h1; h2). If h1 � h2 is positive, it means
that team 1 wins, if it is negative, it means that team 2
wins, and if it is 0, it means the game is balanced. The
proposed model can predict the win probability and it
helps to improve the game balance. This framework is
a suitable tool for identifying the unbalanced situation
in the RTS game, but it is created only for RTS games

and the de�nition of balance in this work is too limited
(if the di�erence between unit health becomes zero, it
means that game is balanced).

Finally, Uriarte and Ontan�on have also inves-
tigated generating balanced maps for StarCraft [15].
PSMAGE has been presented in order to generate
balanced maps for this popular real-time strategy
(RTS) game. This approach has used Voronoi diagrams
to generate an initial map layout and after that,
di�erent properties were assigned to each of the regions
in the diagram. This approach generates the map
procedurally. After generating maps, PSMAGE uses
a collection of evaluation metrics, in order to measure
how balanced a map is. Balanced Map in this work
refers to maps having two conditions. First, if all the
players have the same skill level, they should have
the same chances of winning the game at the end.
Second, in the case of StarCraft, no race should have a
signi�cant advantage over the others. In Table 1, the
approaches are summarized and compared.

3. Background knowledge

This section reviews the basic concepts of GANs and
reinforcement learning algorithms. In our proposed
approach, GANs have been used to create new levels,
using data derived from reinforcement learning and
simulation methods. In this section, these two ap-
proaches are briey overviewed.

3.1. Generative adversarial networks
Generative adversarial networks were �rst introduced
by Goodfellow et al. in 2014 [16]. These networks are
considered to be a subclass of deep learning algorithms.
In fact, they are a neural network composed of two
main components, namely, the generator and the
discriminator:

1. Generator: The generator is fed real numbers as
input. The output of the generator which is equal
to the size of the input dataset is the data that the
generator tries to generate with the characteristics
of the input dataset;

2. Discriminator: The task of the discriminator is to
identify fake data. The input of this network is the
data from the real data set (marked with a real tag),
as well as the output of the generator (marked with
a fake tag). The purpose of the discriminator is to
recognize these labels appropriately and separate
real and fake data.

These two components complement one another
to build the data correctly and with the properties
of the input data set. The function of this neural
network is as follows: First, the generator produces a
given number of random noise data as input and sends
them as output to the discriminator using the forward



M. Rajabi et al./Scientia Iranica, Transactions D: Computer Science & ... 28 (2021) 1497{1514 1501

Table 1. A comparison of game balance approaches.

A
b
il
it

y
to

ch
an

ge
th

e
ga

m
e

m
ec

h
an

is
m

an
d

p
ar

am
et

er
s

A
b
il
it

y
to

ge
n
er

at
e

le
ve

ls

A
b
il
it

y
to

ch
ec

k
th

e
b
al

an
ce

in
le

ve
ls

D
yn

am
ic

d
i�

cu
lt

y
ad

ju
st

m
en

t

U
si

n
g

R
L

in
or

d
er

to
ch

ec
k

le
ve

l

so
lv

ab
il
it

y
an

d
d
i�

cu
lt

y
st

at
e

U
si

n
g

G
A

N
fo

r
ge

n
er

at
in

g
le

ve
ls

N
ot

u
si

n
g

hu
m

an
-g

en
er

at
ed

le
ve

ls

as
a

d
at

as
et

A
ll
ow

in
g

d
es

ig
n
er

s
to

d
e�

n
e

b
al

an
ce

in
a

cu
st

om
iz

ed
w

ay

A
b
il
it

y
to

p
ot

en
ti

al
ly

u
se

th
e

p
ro

p
os

ed

m
od

el
in

ot
h
er

ga
m

e
ge

n
re

s

Proposed approach
p p p p p p p p

Evolving Mario levels in the latent space

of a deep convolutional generative

adversarial network

p p p p

Dynamic game di�culty balancing in real-time

using evolutionary fuzzy cognitive maps

p p p

Automated game balancing in Ms. PacMan

and StarCraft using evolutionary algorithms

p p p p

Game balancing with ecosystem mechanism
p p p

Dynamic di�culty adjustment through

an adaptive AI

p p p

Learning the patterns of balance

in a multi-player shooter game

p p p

DOOM level generation using

generative adversarial networks

p p p p

Balancing players of di�erent skill levels

in a �rst-person shooter game

p p p p p

An automated high-level saliency predictor

for smart game balancing

p p p p p

Real-time challenge balance in an RTS game

using rtNEAT

p p p

Evolving a Designer-Balanced Neural Network

for Ms PacMan

p p p

PSMAGE: Balanced map generation

for StarCraft

p p p

Generating an attribute space for analyzing

balance in single unit RTS game combat

p p

Dynamic Di�culty adjustment of Game

AI for video game dead-end

p p p

Balancing turn-based games with chained

strategy generation

p p p



1502 M. Rajabi et al./Scientia Iranica, Transactions D: Computer Science & ... 28 (2021) 1497{1514

Figure 1. GAN's architecture [48].

Figure 2. The convergence of data made by the generator toward the input data [16].

propagation technique. The discriminator receives
the generator's data and with forward propagation,
calculates the network's output. The generator keeps
the weights �xed while calculating the error and, using
the backward propagation technique, the weights of
the discriminator are modi�ed with the aim of better
diagnosing the real and fake data. Then, the generator
produces a number of new noise data and with forward
propagation, the output will be calculated. As the
generator is trying to trick the discriminator, this new
output is labeled as genuine. In this step, the discrim-
inator's weights are kept �xed and, by calculating the
error and using the backward propagation technique,
the generator's weights are updated.

In Figure 1, the architecture of the GAN is shown.
The parameter z is the random input vector given to
the generator. The parameter X is the training data
that is produced by the generator from the random
input vector. These are fed to the discriminator so that
it can distinguish between real and fake constructed
data. Then, the error rate is calculated using the cost
function which will a�ect the weights of the generator
and discriminator. If we call the data produced by
the generator as pg, then the generator's purpose is
that pg should have the features of X as the input
data. If we represent the random vector with z,
then G(z; �g) is the function that converts the random
vector into the input data space. The parameter �g
in the above function represents the parameters of the
multi-layer perceptron network. The discriminator is
denoted by G(x; �d), where X represents the input
data. The output of this function is a value indicating

whether this data is real or arti�cially constructed by
the generator. Similar to the generator function, �d
denotes the discriminator's parameters of the multi-
layer perceptron network. Simply, the GAN acts like a
min-max dual game.

If this game is represented by V (G;D), the GAN
operates using Eq. (1):

minGmaxDV (D;G) = Ex�Pdata(x)[logD(x)]

+EZ�PZ(z)[log(1�D(g(z))]; (1)

where G is the generator network, D is the discrimi-
nator network, E is the cost function, and G(z) is the
output of the generator network.

If a su�cient amount of time and input data are
available, the general answer to the above equation
would be that the data arti�cially produced by the
generator will be exactly equal to the input data (i.e.
pg = pdata). This is shown in Figure 2. As can be seen
in the �gure, the data produced by the generator is
converged over time with the input data. In this �gure,
the bottom solid line denoted by z displays the random
vector domain and the upper solid line denoted by x
displays the input domain. Vertical lines are drawn
from z to x to show how to map a random vector
domain to a data domain. Step (a) is the beginning of
the network's training, whereas steps (b), (c) and (d),
respectively, show how the generated data is converged
toward the input data.

Many studies have been performed in the domain
of image processing using GANs. In Figure 3, the



M. Rajabi et al./Scientia Iranica, Transactions D: Computer Science & ... 28 (2021) 1497{1514 1503

Figure 3. Outputs of GAN compared to the original data in (a) MNIST dataset, (b) TFD dataset, (c) CIFAR-10 dataset
(fully connected model), and (d) CIFAR-10 dataset (convolutional discriminator and deconvolutional generator [16]).

results obtained from using a GAN are shown in four
di�erent datasets. Figure 3(a) shows how a GAN man-
ages to generate handwritten numbers. Figure 3(b)
illustrates the output of a GAN in the domain of human
face generation. In Figure 3(c) and (d), the GAN is
used to produce animal images. The di�erence in the
output of a GAN depends on the network architecture
as well as the input data collection mechanism, as
shown in the �gure.

3.2. Reinforcement learning
Reinforcement learning is a class of machine learning
algorithms where an agent learns optimal behavior by
interacting with the environment and getting rewards
for its actions. In each step, the agent perceives the en-
vironment and chooses the action it considers the best.
By implementing the action, the state of the environ-
ment might change and the agent is given a numerical
reward. The ultimate goal of the agent is to maximize

Figure 4. The general schema of the reinforcement
learning agent [23].

the gained reward over time. Figure 4, shows the
general scheme of a reinforcement learning algorithm.

Reinforcement learning is usually modeled using
a Markov decision process [49]. A Markov decision
process can be de�ned as (S;A; t; r), where S is a �nite
set of possible environment states, A is a �nite set of
actions, t : s�A�S ! [0; 1] is a function detailing the
probability that the state of the environment changes if
the agent implements an action, and r : s�A�S ! R is
the numerical reward the agent gains by implementing
an action resulting in a particular state transition.

3.3. Q-learning
One of the most popular temporal di�erence reinforce-
ment learning methods is Q-learning [50]. In its basic
form, it can be written as Eq. (2):

Q(St; At) Q(St; At) + �[Rt+1 + ymaxaQ(St+1; a)

�Q(St; At)]; (2)

where S is the environment state, A is an action, t is
the reward, and index S is the current time step. Also,
Q(S;A) is a function of how valuable it is to implement
action A when the state of the environment is S. The
equation o�ers a way to update the Q function when
the agent implements action At in environment state
St, which results in the reward Rt+1 and a new state
St+1. As the agent interacts with the environment,
the Q function is updated until the gained reward for
any episode is maximized. As a result, the Q-learning
algorithm can be written as Algorithm 1, as shown in
Figure 5.



1504 M. Rajabi et al./Scientia Iranica, Transactions D: Computer Science & ... 28 (2021) 1497{1514

Figure 5. Algorithm 1: Q-learning: An o�-policy TD control algorithm.

3.4. Deep Q-networks
Deep-Q-Networks, or DQNs, try to model the Q
function with a deep neural network, usually a convo-
lutional neural network, so that the output is a vector
showing the Q values for each possible action of the
agent. Eq. (3) shows the way DQN is updated:

Y DQNt � Rt+1 + ymax
a
Q(St+1; a; ��t ): (3)

DQN is inherently unstable and uses a mechanism
called experience replay to use older experience for
learning the Q value. This decreases the instability of
the network and helps to improve the learning process
dynamically.

3.5. Hierarchical reinforcement learning
One of the problems of reinforcement learning is the
curse of dimensionality, where the increase in the
dimensions of the problem exponentially increases the
time needed for the agent to learn the optimal pol-
icy. One of the ways to tackle this problem is to
de�ne abstraction layers in the form of temporal or
spatial abstractions to reduce the dimensionality of
the problem and improve the learning speeds. This
type of reinforcement learning is called hierarchical
reinforcement learning [51].

3.5.1. The options framework
One of the most popular frameworks proposed for hi-
erarchical reinforcement learning is the options frame-
work [51]. In this framework, a number of options,
which are macro actions that consist of a number of
low-level actions, are de�ned. Each option O can be
de�ned as < I; �; �, where I is a set of environment
states where the option can be called, � is the policy for
this particular option, and � is the probability where
the option is terminated in each environment state. In
this example, options are de�ned as trying to reach

each coin and the end state in the game. In other
words, I, for the options that try to reach the coins,
are the states in which those coins exist. On the other
hand, I for the option trying to reach the end are the
states which do not have any coin remaining on the
map. The parameter � for each of these options is the
state where the agent reaches the exact tile wherein the
coin or the end is located. For each of these options, a
separate DQN is de�ned that gets awarded for reaching
its respective goal.

The agent is only permitted to use these options
as its actions. After each option is terminated, a new
option from the remaining pool of those available is
selected. This arrangement was chosen to increase the
speed at which the agent learns to �nish the game.

4. The proposed approach

The proposed model in this paper uses a trained
neural network to generate levels that have balanced
parameters. In other words, if one inputs a vector with
random values to the neural network, the output will be
a balanced level. In this section, the general framework
is �rst presented and then the detailed algorithms of
the proposed model.

As for the �rst step, a Mario-like 2D platformer
game has been designed using the Python program-
ming language. The levels of the game contain the
starting point, ending point, platforms, and coins. The
rule of the game is that the player starts from the
starting point. Then, they must obtain all of the coins.
In the end, after receiving every coin, the player should
go to the ending point to win and pass the level. If the
player fails to �nish the game in 300 cycles or falls
down from a platform, they lose. As a reinforcement
learning algorithm has been used to identify whether
a level is solvable after a certain amount of repetitions



M. Rajabi et al./Scientia Iranica, Transactions D: Computer Science & ... 28 (2021) 1497{1514 1505

Figure 6. The designed 2D platformer game for the proposed approach.

Figure 7. The general layout of the introduced framework.

or not, earning coins or reaching the endpoint has a
positive score, while failure creates a negative score.
For every positive score, the AI learns the pattern and
will try to apply it in the next steps. In the next
step, a series of simulations are performed. If the level
is solved at least once in 300 attempts, this level is
stored as a balanced solvable level. Otherwise, it will
be stored as an un-solvable and unbalanced level. The
300 number is the selected threshold used in this paper.
This threshold can be easily modi�ed by di�erent game
designers based on their needs and requirements. These
solvable levels are fed to the GAN network so that
it can start generating similar levels with the same
overall characteristics, and, hence, satisfying the aim
for automatically creating balanced levels.

4.1. The general framework
The GAN requires a very large number of input data
points. To achieve this, it is required that a game
be designed whose levels could be used as the neural
network inputs. Therefore, a two-dimensional 2D
platformer game is designed for this purpose. The logic
of the game is written using the Python programming
language. In addition, Pygame is used to display the
logic of the game if the user has enabled the graphical
implementation of the game's settings. The simple 2D

platformer game designed for this research is shown in
Figure 6.

The general layout of the proposed approach is
shown in Figure 7. As can be seen in the �gure, the
game's map is read from a bitmap image with a size of
15 � 8 pixels. Every pixel's RGB values represent the
status of that cell in the game. At the beginning of the
game, the level is generated based on the pixels of the
map written using Algorithm 2, as shown in Figure 8.
The player in the game can go right, left or jump.
The jump can only be performed when the player is
standing on a platform. The jump speed and the player
speed can be changed in the game con�guration �le.

The logic of the game at any time is calculated
according to the user's inputs, as well as the previous
state of the game map. For example, if the user
pushes constantly to the right, during that time cycle
the player will move based on the player speed in the
con�guration �le. Other aspects, such as game physics,
collision with coins or endpoints, gravity calculations
and anything that requires game logic is performed
in this cycle, and then the state of the game will be
transitioned to the next time cycle. In the rest of this
section, the primary stages will be explained in detail.

4.2. Level generation
In order to obtain balanced levels, it is necessary to



1506 M. Rajabi et al./Scientia Iranica, Transactions D: Computer Science & ... 28 (2021) 1497{1514

Figure 8. Algorithm 2: Level generation.

create levels in a random manner. Then, among the
generated levels, select the ones that are balanced and
use them as inputs for the neural network. Therefore,
Algorithm 2 is used to randomly map the levels.
These levels should have the necessary conditions for
a playable game. This randomly generated level may
be balanced, unbalanced, or even unsolvable. For this
reason, reinforcement learning is applied to determine
the level's solvability.

4.3. Level evaluation
Random levels should be considered in terms of solv-
ability and balance. For simulating the way a real
player progresses through a level, reinforcement learn-
ing has been used. That is, each randomly generated
level is played 300 times. If among these 300 times,
the level is solved even once, it is stored at a balanced
level. Of course, this parameter is only selected as
an intuitive baseline and can change depending on the
actual requirements of the level designer.

Reinforcement learning ultimately tries to max-
imize the accumulated reward for the agent. If the
rewards in the game are set up in such a way that
reaching the coins or getting to the ending state while
having no remaining coins, will result in a positive
numerical reward for the agent, the reinforcement
learning algorithm tries to maximize the reward and
helps the agent �nish the game. While the goal of
this paper is not to create a player agent for the game
environment, for the purpose of evaluating the created
maps, such an agent can be used to see if a map can
actually be solved or not within the stated number
of repetitions. Therefore, a hierarchical reinforcement

learning agent with an options framework and DQN as
the baseline algorithm is set up in the game and given
the task of �nishing a given map. If the agent is able
to �nish the map in less than a number of episodes,
the map is considered solvable. As there is no need to
actually learn how to play the game, the �rst time an
agent �nishes the given map, the learning process is
terminated.

The DQNs are de�ned as neural networks of four
initial convolutional layers followed by two layers of
multi-layer perceptron. The last layer has as many
neurons as the actions the agent can use in the game,
which are left, right and jump. Options are de�ned as
explained in Section 3.5 and each of them has a DQN
assigned to learn how to reach its speci�c goal.

By using this architecture, the chance of deter-
mining whether a map is solvable or not is increased, as
previous successes in reaching intermediate goals such
as getting coins are used to improve the performance
of the agent in the next episode. Algorithm 3, shown
in Figure 9, shows this architecture for evaluating a
generated map. The architecture of the deep neural
network used in the reinforcement learning algorithm
of this study is also shown in Figure 10.

4.4. Learning level generation using GAN
After the balanced levels are saved, they should be
fed to a suitable extension of GAN. For this research,
the implemented model of deep convolutional GAN is
considered. An Adam optimizer has been used with an
input of 0.003. Also, training the network is performed
using the binary cross-entropy method.

The assumed batch size of the network is 32 and



M. Rajabi et al./Scientia Iranica, Transactions D: Computer Science & ... 28 (2021) 1497{1514 1507

Figure 9. Algorithm 3: Reinforcement learning algorithm for solvability.

Figure 10. Reinforcement learning's neural network architecture.

for each dropout layer, it is considered to be 0.2. As
discussed in Section 3, the GAN consists of two parts,
namely, the generator and the discriminator. The GAN
for this research has a di�erent activation function on
each layer, which is presented in detail in the following.

4.4.1. The generator
The generator is a neural network that receives noise
data as input and delivers data to the output layer.
The generator's neural network architecture used in
this research is shown in Figure 11.

As shown in Figure 11, a 1 � 100 vector of the
noise data is received randomly in the input layer of
the generator. Then, in the next layer, a layer with
256�15�8 neurons will be placed as the tanh activation
function. In front of this layer, there exist three layers
of 8 � 15 � 128. The output layer is an 8 � 15 � 5

convolution with a sigmoid activation function, which
has the same image dimensions as those of the level
in �ve di�erent channels. In this research, each pixel
color is considered as a channel. The result is a 5-
channel neural network. In this way, when reading
balanced maps to use as inputs, the input is stored
as a 3D array. In this 3D array, the �rst dimension is
the row, the second dimension is the column and the
third dimension is the channel.

4.4.2. The discriminator
The discriminator is a neural network that receives the
training data and determines whether the input data
is real or fake. The discriminator's neural network
architecture used in this work is shown in Figure 12.
As shown in the �gure, in the input layer of the
discriminator, an 8 � 15 image that contains �ve

Figure 11. The generator's neural network architecture.



1508 M. Rajabi et al./Scientia Iranica, Transactions D: Computer Science & ... 28 (2021) 1497{1514

Figure 12. The discriminator's neural network
architecture.

channels is received. This image, if provided as the
training dataset, has a real data tag and if it is received
from the output of the generator, it has a built-in label.

Then, in front of this layer, there are three layers
with 128� 15� 8 neurons with the activation function
tanh. In the next layer, a layer with 256 neurons is
placed as the tanh activation function. The output
layer contains a neuron with a sigmoid activation
function whose value is between 0 and 1. This
number represents the extent to which this learning
data belongs to the training data set or the output of
the generator.

Algorithm 4, shown in Figure 13, represents the
training algorithm for the GAN used in this research.

After the training process, as well as when allo-

cation of the deep neural network weights is �nished,
a new level is created using Algorithm 5 shown in
Figure 14. This level is a better candidate from the
viewpoint of the discriminator.

Algorithms 4 and 5, respectively, perform the
training process. In the end, a model that generates
balanced levels is stored to be used in the level
generation process. The summary of the steps taken
in the proposed approach are as follows:

1. The generator constructs a random 100-digit vector
between 0 and 1;

2. To perform a forward propagation, the output of
each layer goes to the next layer. This will result in
the �nal layer of the generator to create an image
of the level;

3. The discriminator receives 32 images from the
generator and 32 images from the training dataset
as input;

4. The output of the discriminator's �nal layer, which
is the prediction of the network from each data
label, is computed in the form of forward propa-
gation;

Figure 13. Algorithm 4: Training the generative adversarial network.

Figure 14. Algorithm 5: Generating the map.



M. Rajabi et al./Scientia Iranica, Transactions D: Computer Science & ... 28 (2021) 1497{1514 1509

5. The generator will keep its weights �xed and by
calculating the error and using backward propaga-
tion, the weights of the discriminator are modi�ed
to better detect the real and fake data;

6. The generator produces a number of new noise
data which is calculated by the forward propagation
method;

7. Finally, the weights of the discriminator are kept
constant. By calculating the error and using
backward propagation, the weights of the generator
are modi�ed with the aim of producing data having
the characteristics of the input data set.

After the completion of every 50 learning steps,
the generator creates 25 levels. To generate any of these
25 steps, the generator �rst produces 20 levels and then
the discriminator stores the level that is considered to
be the best.

5. Evaluations and comparisons

In this section, the evaluation scenarios devised to
demonstrate the applicability and accuracy of the
proposed model are given. First, the simulation setup
is discussed and then, the designed evaluation scenarios
are given.

5.1. Simulation setup
The simulations for the 100,000 di�erent levels were
performed on a computer with a Core i7 7800 processor,
an NVidia 1070 Ti graphic card, and 32GB of RAM
for 40 days. From these 100,000 levels, 56,000 levels
were stored as balanced and subsequently used as
input data for the GAN. In another con�guration,
the same evaluations were performed using the cloud
computing center at Iran University of Science and
Technology [52]. 4 Core i7 7800 processors, 4 NVidia
GTX 1080 (SLI), and 80 GB of RAM were provisioned.
The evaluation time was reduced to 11 days.

Generally, training deep learning approaches us-
ing a huge dataset is a time-consuming process.

Most of the related work in this �eld has been
faced with a similar challenge. For example, Frank
et al., in their research, endeavoured to reduce the
training time of their previous work which took more
than 10 days to be completed [53]. In another related
work, Berner et al. tried to use deep reinforcement
learning approaches to learn the Dota 2 game and
the learning time took more than 3 months to be
�nished [54].

Because the training process takes place on a
large volume dataset, it is also intensive in terms
of power consumption. The authors of this paper
have applied a set of techniques to potentially control
and reduce the amount of required power. These
techniques are as follows:

1. In the proposed approach, the agent will top the
learning process whenever it can solve the level in
any of the attempts. Due to the provided de�nition
of a balanced level in this work, the average learning
time would be much faster compared to the case
where more than one attempt was required to
evaluate the balance characteristic for a level;

2. The agent will skip the level that is not solvable,
which saves time for learning other remaining levels.

Finally, it is worth mentioning that the learning
process is a pre-processing activity. After the learning
part is completed, the identi�cation of balanced levels
will be performed signi�cantly faster compared to a
manual process. Such automation is the primary aim
of the current research and also related research.

5.2. Evaluation scenarios
In the proposed approach, when the balanced levels
are selected, they are then fed into the DCGAN
architecture as the training input data. After about
170,000 epochs, the network begins generating levels
that meet the minimum requirements. Also, 25 random
levels in the form of images are generated and saved
every 50 full training epochs. Figure 15 shows how the
change in the output of the generator network during
the training process is occurring.

As shown in the �gure, the pixels of each step
are set up completely random. After a small amount
of training, the network learns that more pixels of the
image should be white. It is also evident from how
the platforms are placed in the image that the network
is learning through time. In the early stages of the
training process, the network cannot properly guess the
number of cells for starting and ending points. But,
as the training progresses, the network's advancement

Figure 15. The progress being made in the generated
level from the starting epoch to the end. The top left
image shows the �rst epoch which is completely random.
As the training progresses, better levels are generated
both from a logical and balance points of view. In the
�nal epoch shown as the bottom right image, a
well-formed �nal level is generated.



1510 M. Rajabi et al./Scientia Iranica, Transactions D: Computer Science & ... 28 (2021) 1497{1514

is signi�cant. As the training network grows further,
the number of starting and ending cells reduces until
the point where only one set of starting and ending
points are generated in the later stages, and coins are
also modi�ed to the right size. In the �gure, the
yellow squares denote the coins, black squares are the
platforms, green and red squares denote the starting
and ending points, respectively, and white squares are
the empty spaces. The network does not initially
generate levels that have the exact requirements given
in Algorithm 2, as shown in Figure 8. In other words, as
the main approach of this work is to use GAN networks
as an inherently unsupervised learning approach, such
adherence will take place after the training process is
completed, both for the generator and discriminator
components. Hence, initially, there is a possibility that
the generated maps from the GAN network have 3 or 4
coins, or that the number of platforms di�er in count,
as given in Algorithm 2. But, such di�erences do not
fail the main purpose of this paper. Eventually, and
after the training process is completed, levels with the
stated conditions will be generated.

After completing the network's training process,
stored models are used to assess the condition of the
level. As mentioned, the randomly generated levels
have a series of basic rules. The minimum requirements
of a map in the game are:

1. It should have exactly one starting point;

2. It should have exactly one ending point;

3. There must be at least 1 and, at most, 3 coins on
the playing �eld;

4. There must be at least 4 platforms;

5. The level must be solvable between 10 to 300
episodes of an RL assisted search. In other words,
in order to keep the di�culty balance of the created
level and prevent the level from being too easy or
too di�cult, the condition for assuming a level to be
balanced is considered to be the number of attempts
that the RL agent makes to solve the level. Hence,
if the agent solves the created level in less than 10
tries, the level is considered to be too easy, and if
the number of tries to solve the level gets above
300, the level is assumed to be too di�cult to solve.
Of course, these threshold numbers can be changed
and modi�ed by the level designer to get the best
outcome.

For every 1000 epochs of training, 200 levels are
created by the generator. Each of these levels is
selected by generating 20 new levels using the generator
and picking the best one using the discriminator. Each
of these 200 levels is checked to see if they meet
minimum requirements. The result of this assessment
is shown in Figure 16. Based on this �gure, it can

be seen that the minimum requirements are met quite
early in the training of the GAN and it reaches a
95 percent adaptation rate to level requirements after
completing about 40000 training epochs. On the
other hand, as seen in Figures 17{19, it takes more
time before the average accuracy of the GAN model
peaks. Also, meeting the minimum requirements is not
the same as generating balanced levels. So, another
evaluation step is necessary to assess this approach.

For evaluating the solvability of the produced
levels, after every 10000 training epochs, the model
is saved and the generated levels are checked for

Figure 16. The percentage of generated maps that meet
the minimum requirements per each 1000 epoch.

Figure 17. Discriminator loss in DCGAN training
epochs.

Figure 18. Model accuracy average in DCGAN training
epochs.

Figure 19. Generator loss average in DCGAN training
epochs.



M. Rajabi et al./Scientia Iranica, Transactions D: Computer Science & ... 28 (2021) 1497{1514 1511

Figure 20. The comparison between the balanced levels
generated from the proposed model and a random level
generator.

solvability. Therefore, these models, with the generator
and the discriminator network, are placed alongside the
simulation �le. Then, instead of getting the level from
the code, the levels are obtained from the generator
model. Getting the level from the trained model is
performed by generating 20 levels. The discriminator
selects the best level amongst those. Then, if the
selected level has the necessary conditions to be used
as a level, it will be used in the game itself. Otherwise,
this process continues until the level that has all the
requirements for being a level is selected.

To evaluate the performance of the GAN used in
this paper, the model state in every 10000 training
epochs is used to create potentially solvable levels.
In this way, 17 models are selected from the stored
models. Then, from each of these models, 2000 levels
are generated and the solvability rate is calculated. In
addition, and for the sake of having a baseline for com-
parison, the game has been executed 2000 times using
a random level generated by a random level generator.
Figure 20 shows the percentage of the balanced levels
created using both of the level generators. As shown
in Figure 20, the best rates of the solvable levels are
in the model saved after the 150000 s training epoch,
in which approximately 83.6 percent of the levels that
the generator produces are solvable and balanced. It
is also observed that the solvability rate of the levels
generated using the best-learned model has improved
by 17.5% compared to the random level generator.

6. Final discussions

One of the points mentioned among the advantages of
the proposed approach is the non-existence of human
operator involvement in the level generation process.
In other words, a large set of random levels are fed to
the GAN to generate the appropriate levels based on
the level requirements speci�ed by the level designer.
This choice is made based on the fact that creating

human-generated levels is both time-consuming and
costly. It is important to note that there is no
claim made that the proposed approach has better
accuracy compared to the manually generated levels
using a human operator and can replace this manual
process. The primary advantage of the approach in
an applied context is that it can provide the level
designer with a huge number of balanced levels from
which she/he can select based on her/his preferences or
taste. Of course, by changing the required parameters
in di�erent application contexts, the approach can be
viewed as a potentially general mechanism for creating
levels in various game genres.

7. Conclusions

Creating balanced levels in video games is one of the
most important challenges for game and level designers.
The lack of attention to the balance of the game
may cause a major failure and a huge pro�t loss
for the company. Thus, in order to automatically
create balance in the game, and consequently reducing
human-error in the design process, in this paper, an
approach is proposed based on Generative Adversarial
Networks (GANs). The proposed approach focuses
on generating balanced levels in 2D platformer games.
To do so, a level generator is created that generates
random levels. Then, using reinforcement learning
algorithms, the solvability of the levels is investigated.
The levels that are identi�ed as solvable are stored
as potential candidates and are then used as inputs
of the GAN's neural network. After completion of
the training process, the neural network saves its best
model and, in the end, it produces a series of balanced
levels. The generated levels and their appropriateness
are then evaluated and compared to a baseline random
level generator. It is shown that the proposed approach
using GAN can generate a balanced level with 83.6
percent accuracy. This result implies that if a level
designer maps the levels into an image �le and applies
a GAN-based approach, such as the one presented in
this work, she/he can build a new balanced level with
high precision.

The approach used in this paper has the follow-
ing strengths compared to the other commonly-used
approaches in the respective �eld:

1. Because the input is fed as images, it can be used in
other game genres in which the levels or parameters
can be stored in an image format. Therefore, this
research is not speci�c to the 2D platformer game
genre;

2. The selection of the features of the neural network
is not performed by a human operator. Thus, the
probability of the existence of human error is low;

3. After training the neural network, the process



1512 M. Rajabi et al./Scientia Iranica, Transactions D: Computer Science & ... 28 (2021) 1497{1514

of generating a new balanced level is performed
e�ciently and with high speed.

This research can be improved in the future to a
great extent. The suggested extensions believed to be
possible for the future of this research are as follows:

1. Changing and improving the parameters and layers
of the generative adversarial network may result in
better outcomes. Modi�cations of the parameters
and the number of layers, or even using another
activation function that is better suited to this
problem, can be considered as a natural next step;

2. Experimenting with the applicability of the method
in a game from another genre. The suggested genres
that seem to be a potential �t are dungeon crawlers,
beat'em up games and even �rst-person shooters;

3. Using the proposed framework to generate not only
levels but also other types of content, such as per-
sonalized units, balanced weapons, business model
design and even texture and 3D model generation,
are some of the exciting areas that can be explored;

4. In this research, there has been a tendency to gen-
erate levels using GAN networks with the balance
conditions mentioned by game designers. The aim
has not been on generating levels with the con-
ditions given in the base random level generation
algorithm (i.e. Algorithm 2). Creating a better
base random level generator and trying to force the
GAN network to generate levels that have exactly
the same rules and conditions of the base level
generator can be an interesting line of research for
further expansion;

5. The reinforcement learning agent in this article has
been used in order to check solvability and di�culty
of levels in the shortest possible time. Because of
the approach of the reinforcement learning algo-
rithms, the results seem to be logical but it does
not guarantee that all the levels will engage players
or be fun for them. So, the games may follow the
de�nition of balance used in this paper but may
not be necessarily engaging or even fun. Putting
more focus on the engagement metrics of the levels
is an interesting subject to be explored in further
expansions;

6. The network used in this paper takes a long time
to check and distinguish balanced and unbalanced
levels. Changing this network or using an ad-
ditional pre-processing stage (for example identi-
fying impossible levels immediately and �ltering
them before giving the generated levels to the RL
algorithm) can improve the overall speed of the
approach, making it more practical for use in more
complex scenarios.

References

1. Ja�e, A., Miller, A., Andersen, E., et al. \Evaluating
competitive game balance with restricted play", 8th
AAAI Conference on Arti�cial Intelligence and In-
teractive Digital Entertainment, Stanford, California,
U.S., pp. 26{31 (2012).

2. Lopez, S.J. and Snyder, C.R., Oxford Handbook of
Positive Psychology, Oxford Library of Psychology,
Oxford University Press, UK (2009).

3. Adams, E., Fundamentals of Game Design, Pearson
Education, New York, U.S. (2014).

4. Kavanagh, W.J., Miller, A., Norman, G., et al.
\Balancing turn-based games with chained strategy
generation", IEEE Transactions on Games (2019).
DOI: 10.1109/TG.2019.2943227

5. P�erez, L.J.F., Calla, L.A.R., Valente, L., et al. \Dy-
namic game di�culty balancing in real time using
evolutionary fuzzy cognitive maps", 14th Brazilian
Symposium Conference on Computer Games and Digi-
tal Entertainment (SBGames), Rio de Janeiro, Brazil,
pp. 24{32 (2015).

6. Silva, M.P., do Nascimento Silva, V., and Chaimowicz,
L. \Dynamic di�culty adjustment through an adaptive
AI", 14th Brazilian Symposium Conference on Com-
puter Games and Digital Entertainment (SBGames),
Rio de Janeiro, Brazil, pp. 173{182 (2015).

7. Yu, X., He, S., Gao, Y., et al. \Dynamic di�culty
adjustment of game AI for video game Dead-End",
3rd International Conference on Information Sciences
and Interaction Sciences, Chengdu, China, pp. 583{
587 (2010).

8. Bosc, G., Tan, P., Boulicaut, J.F., et al. \A pattern
mining approach to study strategy balance in RTS
games", IEEE Transactions on Computational Intel-
ligence and AI in Games, 9(2), pp. 123{132 (2017).

9. Makin, O. and Bangay, S. \Orthogonal analysis of
StarCraft II for game balance", Australasian Computer
Science Week Multiconference, Geelong, Australia,
Article No. 30 (2017).

10. Schell, J. \The Art of Game Design: A book of lenses",
2nd Edn, AK Peters/CRC Press, Florida, U.S. (2014).

11. Karavolos, D., Liapis, A., and Yannakakis, G. \Learn-
ing the patterns of balance in a multi-player shooter
game", 12th International Conference on the Founda-
tions of Digital Games, New York, U.S., Article No. 70
(2017).

12. Olesen, J.K., Yannakakis, G.N., and Hallam, J. \Real-
time challenge balance in an RTS game using rt-
NEAT", 2008 IEEE Symposium on Computational
Intelligence and Games, Perth, Australia, pp. 87{94
(2008).

13. Morosan, M. and Poli, R. \Evolving a designer-
balanced neural network for Ms PacMan", 9th Com-
puter Science and Electronic Engineering (CEEC),
Colchester, England, pp. 100{105 (2017).



M. Rajabi et al./Scientia Iranica, Transactions D: Computer Science & ... 28 (2021) 1497{1514 1513

14. Bangay, S. and Makin, O. \Generating an attribute
space for analyzing balance in single unit RTS game
combat", 2014 IEEE Conference on Computational
Intelligence and Games, Dortmund, Germany, pp. 1{8
(2014).

15. Uriarte, A. and Ontan�on, S. \Psmage: Balanced map
generation for starcraft", 2013 IEEE Conference on
Computational Intelligence in Games (CIG), Niagara
Falls, Canada, pp. 1{8 (2013).

16. Goodfellow, I., Pouget-Abadie, J., Mirza, M., et
al. \Generative adversarial nets", Neural Information
Processing Systems, Montreal, Canada, pp. 2672{2680
(2014).

17. Liu, G.C., Wang, J., Youn, G., and Kim, J. \Multi-
scale multi-class conditional generative adversarial
network for handwritten character generation", The
Journal of Supercomputing, 73(12), pp. 1{19 (2017).

18. Tran, L., Yin, X., and Liu, X. \Disentangled repre-
sentation learning gan for pose-invariant face recogni-
tion", Computer Vision and Pattern Recognition, 3(6),
pp. 1415{1424 (2017).

19. Song, F.Y.Z.S. and Xiao, A.S.J. \Construction of a
large-scale image dataset using deep learning with
humans in the loop", arXiv preprint arXiv:1506.03365
(2015).

20. Mathieu, M., Couprie, C., and LeCun, Y. \Deep multi-
scale video prediction beyond mean square error",
arXiv preprint arXiv:1511.05440 (2016).

21. Baddar, W.J., Gu, G., Lee, S., et al. \Dynamics
transfer GAN: generating video by transferring arbi-
trary temporal dynamics from a source video to a
single target image", arXiv preprint arXiv:1712.03534
(2017).

22. Yang, L.C., Chou, S.Y., and Yang, Y.H. \MidiNet:
A convolutional generative adversarial network for
symbolic-domain music generation", 18th Interna-
tional Society for Music Information Retrieval Con-
ference (ISMIR'2017), Suzhou, China, pp. 1{8 (2017).

23. Sutton, R.S. and Barto, A.G., Reinforcement Learning:
An Introduction, MIT Press, Cambridge, England
(2018).

24. Zhang, C., Vinyals, O., Munos, R., et al. \A study
on over�tting in deep reinforcement learning", arXiv
preprint arXiv: 1804.06893 (2018).

25. Summerville, A.J., Snodgrass, S., Mateas, M., et
al. \The vglc: The video game level corpus", arXiv
preprint arXiv:1606.07487 (2016).

26. Volz, V., Schrum, J., Liu, J., et al. \Evolving
Mario levels in the latent space of a deep convolu-
tional generative adversarial network", arXiv preprint
arXiv:1805.00728 (2018).

27. Bontrager, P., Roy, A., Togelius, J., et al. \Deep-
MasterPrint: Fingerprint spoo�ng via latent variable
evolution", arXiv preprint arXiv:1705.07386 (2017).

28. Hansen, N., M�uller, S.D., and Koumoutsakos, P.
\Reducing the time complexity of the derandomized
evolution strategy with covariance matrix adaptation
(CMA-ES)", Evolutionary Computation, 11(1), pp. 1{
18 (2003).

29. Shaker, N., Togelius, J., and Nelson, M.J., Procedural
Content Generation in Games, Springer International
Publishing, Switzerland (2016).

30. Togelius, J., Yannakakis, G.N., Stanley, K.O., et
al. \Search-based procedural content generation: A
taxonomy and survey", IEEE Transactions on Compu-
tational Intelligence and AI in Games, 3(3), pp. 172{
186 (2011).

31. McCormack, J. \Interactive evolution of L-system
grammars for computer graphics modelling", Complex
Systems: From Biology to Computation, ISO Press
(1993).

32. Mizuno, K. and Nishihara, S. \Constructive generation
of very hard 3-colorability instances", Discrete Applied
Mathematics, 156(2), pp. 218{229 (2008).

33. Belhadj, F. \Terrain modeling: a constrained fractal
model", 5th International Conference on Computer
Graphics, Virtual Reality, Visualisation and Interac-
tion, Grahamstown, South Africa, pp. 197{204 (2007).

34. Papageorgiou, E.I. and Salmeron, J.L. \A review of
fuzzy cognitive maps research during the last decade",
IEEE Transactions on Fuzzy Systems, 21(1), pp. 66{
79 (2013).

35. Kyriakarakos, G., Dounis, A.I., Arvanitis, K.G., et al.
\Design of a fuzzy cognitive maps variable-load energy
management system for autonomous PV-reverse osmo-
sis desalination systems: A simulation survey", Applied
Energy, 187, pp. 575{584 (2017).

36. Back, T., Evolutionary Algorithms in Theory and
Practice: Evolution Strategies, Evolutionary Program-
ming, Genetic Algorithms, Oxford University Press
(1996).

37. Crepin�sek, M., Liu, S.H., and Mernik, M. \Explo-
ration and exploitation in evolutionary algorithms: A
survey", ACM Computing Surveys, 45(3), pp. 1{33
(2013).

38. Morosan, M. and Poli, R. \Automated game balanc-
ing in Ms. PacMan and StarCraft using evolutionary
algorithms", European Conference the Applications of
Evolutionary Computation, Amsterdam, The Nether-
lands, pp. 377{392 (2017).

39. Espejo, P.G., Ventura, S., and Herrera, F. \A sur-
vey on the application of genetic programming to
classi�cation", IEEE Transactions on Systems, Man,
and Cybernetics, Part C (Applications and Reviews),
40(2), pp. 121{144 (2010).

40. Gunturu, M., Shakarad, G.N., and Singh, S. \Fit-
ness function to �nd game equilibria using genetic
algorithms", 6th International Conference on Ad-
vances in Computing, Communications and Informat-
ics (ICACCI'17), University in Manipal, India, pp.
1531{1534 (2017).



1514 M. Rajabi et al./Scientia Iranica, Transactions D: Computer Science & ... 28 (2021) 1497{1514

41. Xia, W. and Anand, B. \Game balancing with ecosys-
tem mechanism", International Conference on Data
Mining and Advanced Computing (SAPIENCE), Er-
nakulam, India, pp. 317{324 (2016).

42. Hendrikx, M., Meijer, S., Van Der Velden J, et al.
\Procedural content generation for games: A survey",
ACM Transactions on Multimedia Computing, Com-
munications, and Applications (TOMM), 9(1), pp. 1{
24 (2013).

43. Kennedy, J. \Particle swarm optimization", Encyclo-
pedia of Machine Learning, Springer, U.S. (2011).

44. Giusti, R., Hullett, K., and Whitehead, J. \Weapon
design patterns in shooter games", First Workshop on
Design Patterns in Games, Carolina, U.S., Article No.
3 (2012).

45. Cachia, W., Liapis, A., and Yannakakis, G.N. \Multi-
level evolution of shooter levels", 11th Arti�cial Intel-
ligence and Interactive Digital Entertainment Confer-
ence, California, U.S., pp. 115{121 (2015).

46. Giacomello, E., Lanzi, P.L., and Loiacono, D. \DOOM
level generation using generative adversarial net-
works", arXiv preprint arXiv:1804.09154 (2018).

47. Filatov, A., Filatov, A., Krinkin, K., et al. \2D
SLAM quality evaluation methods", arXiv preprint
arXiv:1708.02354 (2017).

48. Ponti, M.A., Ribeiro, L.S., Nazare, T.S., et al. \Gen-
erative adversarial networks", Presentation Content
Inspired by Ian Goodfellow's Tutorial on NIPS (2016).

49. Calderone, D. and Sastry, S.S. \Markov decision pro-
cess routing games", 8th International Conference on
Cyber-Physical Systems (ICCPS), Pittsburgh, U.S.,
pp. 273{280 (2017).

50. Van Hasselt, H., Guez, A., and Silver, D. \Deep
reinforcement learning with double Q-learning", 30th
Arti�cial Intelligence Conference, Phoenix, Arizona,
U.S., pp. 2094{2100 (2016).

51. Kulkarni, T.D., Narasimhan, K., Saeedi, A., et al.
\Hierarchical deep reinforcement learning: Integrat-
ing temporal abstraction and intrinsic motivation",
Advances in Neural Information Processing Systems
Conference, Barcelona, Spain, pp. 3675{3683 (2016).

52. Cloud Compuing Center, Iran University of Science
and Technology, Available: https://ccc.iust.ac.ir/

53. He, F.S., Liu, Y., Schwing, A.G., et al. \Learning to
play in a day: Faster deep reinforcement learning by
optimality tightening", arXiv preprint arXiv:1611.0160
(2016).

54. Berner, C., Brockman, G., Chan, B., et al. \Dota 2
with large scale deep reinforcement learning", arXiv
preprint arXiv:1912.06680 (2019).

Biographies

Morteza Rajabi obtained his BS and MS degrees in
Computer Engineering from Iran University of Science
and Technology. His research interests include the
utilization of machine learning methods in the domain
of video game development.

Mehrdad Ashtiani received his BS, MS and PhD
degrees in Software Engineering in 2009 and 2011, and
2015, respectively, from Iran University of Science and
Technology, Tehran, Iran, where he is currently Assis-
tant Professor in the School of Computer Engineering.
His main research interests include trust modeling and
the applications of uncertainty modeling to the domain
of computer science.

Behrouz Minaei-Bidgoli is currently Associate Pro-
fessor in the School of Computer Engineering at Iran
University of Science and Technology, Tehran, Iran. He
is head of the Data Mining Lab (DML) that performs
research on various areas in arti�cial intelligence and
data mining, including text mining, web information
extraction, and natural language processing.

Omid Davoodi completed his BS and MS degrees in
Computer Engineering at Iran University of Science
and Technology, Tehran, Iran and is currently a PhD
candidate at Carleton University, Ottawa, Canada. His
research interests include explainable arti�cial intelli-
gence, reinforcement learning and procedural content
generation using machine learning.




