References:
[1] Walenz, B. Multi robot coverage and exploration: a survey of existing techniques (2016).
[2] Blatt, F. and Szczerbicka, H Combining the multi-agent ood algorithm with frontier-based exploration in search & rescue applications, International Symposium on Performance Evaluation of Computer and Telecommunication Systems (SPECTS) IEEE, pp. 17 (2017).
[3] Davoodi, M., Abedin, M., Banyassady, B., Khanteimouri, P., and Mohades, A. An optimal algorithm for two robots path planning problem on the grid, Robotics and Autonomous Systems, 61(12). pp. 1406-1414 (2013).
[4] Davoodi, M. Bi-objective path planning using deterministic algorithms, Robotics and Autonomous Systems, 93, pp. 105-115 (2003).
[5] Davoodi, M., Panahi, F., Mohades, A., and Hashemi, S.N. Multi-objective path planning in discrete space, Applied Soft Computing, 13(1), pp. 709- 720 (2013).
[6] Haynes, P.S., Alboul, L. and Penders, J. Dynamic graph-based search in unknown environments, Journal of Discrete Algorithms, 12, pp. 213 (2012).
[7] Dereniowski, D., Disser, Y., Kosowski, A., Paj¡k, D. and Uzna«ski, P. Fast collaborative graph exploration, Information and Computation, 243, pp. 3749 (2015).
[8] Davoodi, M., Panahi, F., Mohades, A., and Hashemi, S.N. Clear and smooth path planning, Applied Soft Computing, 32, pp. 568-579 (2015).
[9] Chen, C.Y. and Ko, C.C. An evolutionary method to vision-based self- localization for soccer robots, Scientia Iranica. Transaction B, Mechanical Engineering, 22(6), pp. 2071-2080 (2015).
[10] Bahar, M.R.B., Ghiasi, A.R., and Bahar, H.B. Grid roadmap based ANN corridor search for collision free, path planning, Scientia Iranica, 19(6), pp. 1850-1855 (2012).
[11] Kumar, P.B., Sahu, C., Parhi, D.R., Pandey, K.K. and Chhotray, A. Static and Dynamic Path Planning of Humanoids using an Advanced Regression Controller, APA Scientia Iranica, 26(1), pp. 375-393 (2019).
[12] Book, R.V., Michael R.G and David S.J, Computers and intractability: A guide to the theory of NP-completeness, Bulletin (New Series) of the American Mathematical Society (1979).
[13] Christodes, N. Worst-case analysis of a new heuristic for the travelling salesman problem, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976).
[14] Rigni, M., Koutsoupias, E., and Papadimitriou, C. An approximation scheme for planar graph TSP, Proceedings of IEEE 36th Annual Foundations of Computer Science, 11(4), pp. 640-645 (1995).
[15] Arora, S. Polynomial time approximation schemes for Euclidean traveling salesman and other geometric problems, ACM, 45(5), pp. 753-782 (1998).
[16] Grith, J.C. A meta-algorithm analysis of the Traveling Salesman Problem using cluster-analysis and algorithm recommendation, Bradley University (2013).
[17] Arkin, E.M., Fekete, S.P., and Mitchell, J.S. Approximation algorithms for lawn mowing and milling, Elsevier, 17(1-2). pp. 25-50 (2000).
[18] Ntafos, S. Watchman routes under limited visibility, Elsevier, 1(3), pp. 149-170 (1992).
[19] Wernli, D. Grid exploration, Master thesis, ETH Zurich, Department of Computer Science (2012).
[20] Arkin, E.M., Bender, M.A., Demaine, E.D., Fekete, S.P., Mitchell, J.S. and Sethia, S., Optimal covering tours with turn costs, SIAM, 35(3), pp. 531-566 (2005).
[21] Pajak, D. Algorithms for deterministic parallel graph exploration, Université Sciences et Technologies-Bordeaux I (2014).
[22] Umans, C., and Lenhart, W. Hamiltonian cycles in solid grid graphs, IEEE, 11(4), pp. 496-505 (1997).
[23] Itai, A., Papadimitriou, C.H., and Szwarcter, J.L. Hamilton paths in grid graphs, SIAM, 11(4), pp. 676-686 (1982).
[24] Salman, A.N.M., Baskoro, E.T., and Broersma, H.J. A note concerning Hamilton cycles in some classes of grid graphs, ACM, 35(1), pp. 65-70 (2003).
[25] Fischer, A., and Hungerländer, P. The traveling salesman problem on grids with forbidden neighborhoods, Journal of Combinatorial Optimization, 34(3), pp. 891-915 (2017).
[26] Davoodi, M., Ghadikolaei, M.K. and Malekizadeh, M.M. Exploring Rectangular Grid Environments, 1st Iranian Conference on Computational Geometry, Tehran, Iran (2018).
[27] Senarathne, P.G.C.N. and Wang, D. Incremental algorithms for Safe and Reachable Frontier Detection for robot exploration, Robotics and Autonomous Systems, 72, pp. 189206 (2015).
[28] Gabriely, Y., and Rimon, E. Spanning-tree based coverage of continuous areas by a mobile robot, Annals of mathematics and articial, intelligence, 31(1-4), pp. 77-98 (2001).
[29] Czyzowicz, J., Dereniowski, D., G¡sieniec, L., Klasing, R., Kosowski, A., and Paj¡k, D. Collision-free network exploration, Journal of Computer and System Sciences, 86, pp. 7081 (2017).
[30] Disser, Y., Mousset, F., Noever, A., kori¢, N. and Steger, A. A general lower bound for collaborative tree exploration, International Colloquium on Structural Information and Communication Complexity.
Springer, Cham, pp. 125-139 (2017).
[31] Bampas, E., Chalopin, J., Das, S., Hackfeld, J. and Karousatou, C. Maximal exploration of trees with energy-constrained agents, arXiv preprint arXiv:1802.06636 (2018).