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Abstract. In this paper, the problem of exploring a grid environment in the o�ine setting
is studied. The goal is to propose an algorithm to �nd the minimum number of robots for
exploring a rectangular grid environment with n rows and m columns, denoted by R(n;m),
at a prede�ned time T . In case of no obstacles in the environment, an optimal solution
is proposed for the problem. In another case when the environment may contain some
obstacles, it is pointed out that the problem is NP-complete and it cannot be approximated
within better than a factor 2. Finally, a 4-approximation algorithm is presented in order
to explore R(n;m) in the presence of obstacles.
© 2021 Sharif University of Technology. All rights reserved.

1. Introduction

Robot path planning is one of the most fundamental
problems in robotics that has received much attention
among researchers. This problem is the task of �nding
a path between the start and goal positions in which
�nding an e�cient path is the main purpose. Potential
applications of mobile robots include a wide range of
functions such as vacuum the room, clearing a mine,
harvester, etc. [1,2]. For each autonomous robot, given
start and goal positions, solutions to this problem can
be applied in scenarios where each robot has to �nd
a minimum path from its start to its goal position
without hitting obstacles 10 or other robots in an
environment [3].

Robot path planning has been extensively stud-
ied [4{6]. Due to the shape of robots and their abilities,
several studies have tried to improve the e�ciency of
problem by considering across a variety of dimensions
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pertaining to the environment. The environment could
be either o�ine or online [7]. In the o�ine version,
the environment is known to the robots in advance;
in contrast, in the online version, the environment is
unknown to the robots and they should move without
knowing the environment. Also, the environment
could be modeled as discrete or continuous [5,8]. The
discrete model which is known as grid environments
is a powerful model that it is easy to implement.
Variations in single or multi-objective problem is also
considered [5,8,9]. For instance, authors [8] proposed
a multi objective model with focus on length and
clearance of the �nding path. In a wide variety of
applications, in order to perform the job, one needs
more than one robot to complete the task. So, single or
multiple robots versions of the path planning problem
have also been considered [3,9]. Another variation of
the path planning problem could be de�ned as static
or dynamic environment [10,11]. In the static setting,
there is not any change in the environment in the
whole process; however, in the dynamic setting, the
environment could undergo changes in each time step.

Robot exploration is the problem of exploring the
whole given environment in the minimum amount of
time. This problem is among the most widely studied
problems in path planning. According to di�erent



1516 M. Davoodi et al./Scientia Iranica, Transactions D: Computer Science & ... 28 (2021) 1515{1528

variants of the path planning, robot exploration also
has been investigated in di�erent settings. However,
in this paper, the concentration is on the exploration
problem when the environment is a rectangular grid.
Here, the robots are unable to communicate. Moreover,
it is assumed that the robots are uniform and the same
in shape and moving ability.

2. Related work

Path planning is one of the most challenging problems
in the �eld of robotics. It is not easy to �nd the shortest
possible path between the start and goal positions in
the minimum amount of time. Researchers have tried
to �nd such a path by heuristic methods. However, the
heuristic approaches presented in [5,8] do not guarantee
achieving optimal paths. But, Davoodi [4] presented
an e�cient algorithm for the problem. Haynes et
al. [6] used a virtual geometric structure in order to
coordinate a team of robots and proposed an e�cient
algorithm for solving the online version of it.

The exploration problem is closely related to the
Hamiltonian cycle and Traveling-Salesman Problems
(TSP) both of which are NP-complete [12]. In its
full generality, these problems cannot be approximated.
Christo�des [13] considered a speci�c version of this
problem which is named the metric TSP. Although
this problem remains NP-complete, it is no longer hard
to approximate. Indeed, the algorithm proposed by
Christo�des can approximate the problem within a
factor of 3/2. The mechanism presented in [14{16]
having identical guarantee of 1+� approximation factor
for TSP. Arkin et al. [17] proposed a 53/40 factor
approximation algorithm for this problem. Arkin
et al. [17] and Ntafos [18] gave 3/4 and 5/6 factor
deterministic algorithms, respectively.

There is a polynomial-time reduction from TSP
to the exploration Problem in grid graphs. The
main idea of the problem is that �nding a minimum
cost cycle for a weighted graph equals obtaining an
optimal exploration path for the corresponding grid
graph. Although, TSP is NP-complete and the grid
exploration problem without holes is still an important
open problem [19,20].

In grid exploration, the aim is to �nd a shortest
possible tour in a grid environment in which every cell
of the grid should be visited at least once [19]. In
fact, the robot is assumed to occupy one cell of the
grid and, in each time step, moved one cell up, down,
left or right [19,21]. Consider the grid graph G(V;E)
that represents a grid environment E in which each
vertex of V and edge of E in G corresponds to a free
cell and connection between two adjacent free cells,
respectively [19]. It is clear that jV j is equal to the
number of free cells in E and the maximum degree of
each vertex V is 4. A grid graph G in the absence of

obstacles is called solid grid graph. Otherwise, it is
called general grid graph [22]. Itai et al. [23] proved
that �nding a Hamiltonian cycle in general grid graphs
is an NP-complete problem. Based on this study, the
exploration problem for general grid graphs is NP-
complete as well. Umans and Lenhart [22] presented a
polynomial time algorithm in solid grid graphs with
N vertices in which the existence of a Hamiltonian
cycle could be determined at O(N4) time. Otherwise,
they reported at O(N2) time that no Hamiltonian
cycle existed. The existence of a Hamiltonian Path
in rectangular graph R(n;m) came from [23] for the
�rst time. They presented a linear time algorithm
in the number of vertices of the graph. There is
a polynomial time algorithm for deciding if a given
R(n;m) has a Hamiltonian cycle if and only if m �
n is even. Otherwise, R(m;n) has no Hamiltonian
cycle [24]. Fischer and Hungerl�ander [25] presented an
optimal approach to exploring R(n;m) by one robot
in the o�ine setting which the environment is known
in advance. The length of the exploration path P
means that the sum of the lengths of edges on it is
m � n + 1 if the value of m � n is odd. Otherwise,
its value is m � n. Davoodi et al. [26] investigated
this problem in the online setting where a robot only
has accurate knowledge about its four adjacent ones
without knowing the location of the other cells. They
presented an optimal algorithm when the start position
lied on the boundary of R(n;m). Also, the competitive
ratio of their algorithm is 1 + 4=mn when the start
position of the robot is an arbitrary cell. In [27], the
authors proposed an incremental algorithm for e�cient
frontier detection for robot exploration. Gabriely and
Rimon [28] transformed a continues area to discrete
cells and presented an algorithm to explore cells by only
one robot. In fact, they considered a continuous planar
area by a square-shaped tool attached to a mobile robot
which is a square of size D. They subdivided the area
into square cells of size 2D in which the number of
cells is N , regardless of whether or not the cells were
partially covered by obstacles. They proved that the
total complexity of their method was O(N) and the
length of the exploration was c = N � 4D, which
is optimal. The main drawback of their algorithm is
that it does not work well for an area that cannot be
divided into cells of size 2D, completely. Czyzowicz et
al. [29] provided the exact bound on the collision-free
exploration time for trees in the o�ine setting. In the
online setting, they proposed collision-free exploration
strategies running in O(n2) rounds in the tree network.
Disser et al. [30] proposed a tight lower bound on the
number of robots needed for any competitive algorithm
for tree exploration. The authors in [31] provided
a 3-competitive algorithm that divided the tree into
subtrees during the exploration process.

Although the above-mentioned studies have
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achieved good results in optimization of exploring in
a condition where the exploration time of the robots
is not determined, in practice each job needs to be
performed in a limited time T and therefore, these
methods may not work well. The aim of this study
is to �nd the minimum numbers of robots in order
to explore a Rectangle Grid Environment (RGE) at
maximum prede�ned time T . Application of this prob-
lem includes emergency cases where time is generally
crucial and vital; for instance, probing a whole area in
natural disasters like earthquakes or 
ooding in order
to �nd injured people, sweeping a �eld by a harvester
for gathering crops, or visiting an area in space by a
space explorer in a prede�ned time.

In this paper, �rst, the case where there is no
obstacle in RGE is considered and an optimal algorithm
to �nd the minimum number of robots for exploring
the environment is presented. Second, by using the
Hamiltonian cycle problem, it is shown that deter-
mining the minimum number of robots for exploring
RGE in the presence of obstacle cells is NP-hard and it
cannot be approximated within a factor better than 2.
Furthermore, a 4-approximation factor algorithm for
this problem is proposed.

3. Methodology

Consider a rectangular grid environment R(n;m)
whose cells have unit size, where n and m are the
number of rows and columns, respectively, and a
prede�ned time T . In this study, the objective is to
compute the minimum number of robots to explore
R(n;m) in which each robot has a limited time T
to explore a certain part of RGE. Notice that an
exploration path is a tour, T must be an even number.
Each robot can just occupy one cell at any time step
t � T . It is assumed that each robot can move freely in
four cardinal directions and each cell should be visited
by at least one robot.

Suppose that the exploration path of an arbi-
trary robot rbi is EPi which is shown as a sequence
ci1; ci2; � � � ; cie�1; cie in which 8i; j; cij is a free cell with a
unit size and ci1 = cie for some e 2 [T ]. Let visitj be the
number of times that rbi visits cell cj . The length of
exploration path EPi is denoted by jEPij. Thus, it is
wise to be careful that the exploration path EPi does
not contain two arbitrary cells ck = cj such that k 6= j,
as possible, except for c1 and ce.

De�nition 1.Given a robot rbi, the number of\misses"
mi in the rbi's exploration path EPi = ci1; ci2; � � � ;
cie�1; cie is de�ned as mi = T � jEPij+Pe

j=1 (visitj �
1)� 1.

Simply put, mi represents the amount of time
robot rbi wastes in an exploration process. So, mi is
equal to the di�erence between the prede�ned time T

and the length of exploration path EPi, rbi intends to
walk through plus the total number of times rbi revisits
some cells more than once in EPi minus 1 (since the
start and goal position are the same and it is required
to be visited twice). Let nrbA denote the number of
robots an arbitrary algorithm A decides to use for ex-
ploring RGE. Let MA =

PnrbA
i=1 mi be the total number

of misses ofA in the exploration of RGE. IfA is obvious
from the context, the A subscript will be dropped (i.e.,
nrb is used instead of nrbA, M instead of MA).

De�nition 2. An Algorithm A is optimum for explor-
ing RGE if there is no other algorithm that results in
less misses than A. In particular, MA � MA0 for any
algorithm A0 exploring RGE.

Therefore, the aim is to �nd an optimal algorithm
to explore RGE. In other words, the number of robots
nrb determines the number of misses M in an RGE
exploration process. Also, let nrbopt and Mopt be the
optimal number of robots and misses in exploring RGE,
respectively.

Observation 1. Consider an arbitrary algorithm A
used to explore R(n;m). If MA < z � T for some
integer z � 1, then nrbA = nrbopt + z � 1.

Theorem 1. Consider an algorithm A exploring RGE.
If MA = Mopt, then nrbA = nrbopt.

Proof. 5Algorithm A uses nrbA robots to explore
RGE and each robot rbi visits T �mi cells. So:

# cell � (nrbA � T �MA): (1)

By the assumption that MA = Mopt,

# cell � (nrbA � T �Mopt): (2)

Similar argument applies to an optimal solution.
Therefore:

nrbopt � # cell +Mopt

T
: (3)

Thus, by Eqs. (2) and (3), it can be concluded that
nrbopt � nrbA. �

By following Theorem 1, some patterns will be
presented, where the total number of misses is optimal
(also the number of robots).

It is easy to show that it is impossible to give
one optimal particular pattern in order to explore an
arbitrary R(n;m) for any given time T . Unfortunately,
the drawing patterns of exploring the environment
depend quite heavily on m;n and T . Hence, one
cannot hope to come up with an optimal approach in
which only one drawing pattern solves the problem. In
fact, in this study, the environment will be partitioned
into speci�c areas based on m;n and T in order to
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Figure 1. Subdividing R(x < T=2; y < T=2) into
L-Shapeds (LSs) and 2-L-Shapeds (2-LSs).

explore these local areas optimally such that the local
optimums give a global optimum. Therefore, �rst,
some of the basic notions and techniques are introduced
to explore some particular environments. Then, the
more general RGE is considered and explored optimally
by subdividing it to particular environments. To be
clearer, consider Figure 1, this grid must be explored
at time T with minimum number of robots. To
this end, each robot should visit most of unexplored
cells such that it satis�es the exploration condition
means that it must return to the start cell. If m
(or n) is equal to T=2, the exploring path will be a
rectangle environment since every two columns could
be explored by one robot. Therefore, m=2 robots are
required to explore the whole environment. Otherwise,
for exploring R(x; y), it is subdivided into L-Shapeds
(LSs) and 2-L-Shapeds (2-LSs), which are described
in Section 3.1 in detail. Throughout this study, for
exploring R(n;m), dm � n=T e is considered as an
optimal number of robots.

Before jumping right into details, it is more
important to take a quick look at the proposed al-
gorithm with respect to T , which is even. In the
appendix, some approaches are described for exploring
the special environments where the number of rows
and/or columns is less than a speci�c threshold (less
than 6) in order to get rid of abundant descriptions.
However, for greater columns, according to m and n,
splitting strategies are developed to produce small grid
areas. Generally speaking, suppose exploring starts
from the upper left-hand corner cell with 2�T=2 blocks
vertically (see Figure 2) until the remaining rows n0 and
columns m0 are less than T=2 and more than 3 (i.e.,
3 � n0, m0 � T=2) which will be explained in more
detail in Subsections 3.1 and 3.2. It is obvious that no
misses occur in exploring R(m�m0; n�n0). Therefore,
it is enough to provide some optimal patterns to explore
the rest of the environment. Indeed, with respect to
n0 and m0, di�erent strategies are proposed for the

Figure 2. General drawing pattern for exploring R(n;m),
where 3 � n0;m0 � T=2.

unexplored areas, i.e., R(n;m0) and R(n0;m � m0).
In the following sections, optimal patterns are given
in order to explore other areas and show that the
whole area is explored optimally. Based on the general
drawing pattern, 3 � n0, m0 � T=2. So, in the
following, a particular environment is examined where
n0 < T=2 and m0 < T=2.

3.1. Exploring R(x < T=2; y < T=2)
Here, it is assumed that the number of rows and
columns of RGE is less than T=2, which is denoted
by R(x < T=2; y < T=2).

De�nition 3. An LS(a � 1; k � 2; x) is like an RGE,
where the total number of cells is at most T , in which
a is the number of columns of the �rst row, where a �
T=2� 2. Also, k and x show the total number of rows
and columns of LS, respectively, where x; k � T=2� 1
and a < x (Figure 3(a)).

De�nition 4. A 2� LS(a � 1; k � 3; x; b � 1) is like
an LS, where the total number of cells is at most T , b
is the number of columns of the last row, b � T=2 � 2
(Figure 3(b)), and a; b < x.

For exploring R(x; y), it is subdivided into LS and
2-LS.

First, exploration patterns are presented to ex-
plore each of these shapes by one arbitrary robot rbi
at maximum time T and show that mi is optimal. To
this end, it is shown that the total number of misses M
occurring during the exploration of R(x; y), is optimal.
Consider an LS, a grey area A whose width and length
are k � 2 and x; the rest of LS on the top of A which
is shown as a white area in Figure 4.

According to a, k, and x, di�erent exploration
patterns are presented for exploring an LS. The follow-
ing exploration patterns state optimal results. Con-
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Figure 3. Examples of (a) LSs and (b) 2-LSs environments.

Figure 4. An arbitrary L-Shaped (LS), where width and
length of area A are k � 2 and x, respectively.

sider LS(a = 2o; k = 2o + 1; x = 2o + 1) such that
o 2 N means that a is even, k and x are odd, and
the drawing pattern in Figure 5(a) can be applied for
this case. The presented drawing pattern is shown in
Figure 5(b) for LS(a = 2o; k = 2o; x = 2o) such that
o 2 N . Obviously, no miss occurs in these two cases.
Similarly, for other values of a � 2, k and x, exploration
patterns can be presented and the number of misses is
at most 1, which is optimal in the worst case.

In the following, it is proven that these drawing
patterns are optimal. Also, it is shown that the number
of misses of every possible exploration pattern for a
given LS in which a � 1 is at least 2 in the worst case.

Lemma 1. The number of misses M of any determin-
istic algorithm for exploring an LS(a � 1; k; x) is at
least 2 in the worst case.

Figure 6. Tight examples on the number of misses for (a)
L-Shaped (LS) and (b) 2-L-Shaped (2-LS).

Proof. Similar to the approach by Fischer and
Hungerl�ander [25], consider an LS(a = 1; k = 4; x =
3) as Figure 6(a). For visiting cell (R0; C3), any
deterministic algorithm must visit cell (R1; C3) twice.
Simply, checking all the drawing patterns for exploring
the rest of LS leads to at least one miss for each area.
So, M is at least 2 in the worst case. �

In the same way, exploration patterns can be
presented for a given 2-LS in which a and b are bigger
than 1 and the number of misses for each pattern
is optimal. For instance, consider two special cases
2-LS(a = 2o; k = 2o; x = 2o; b = 2o) and 2-LS(a =
2o; k = 2o + 1; x = 2o; b = 2o) such that o 2 N which
can be explored without any misses (see Figure 7).

The other cases of 2-LS(a � 2; k; x; b � 2) can be
explored optimally by simply following the mentioned
patterns in which the number of misses is at most
2. Also, in a similar way, one can prove that as for
Lemma 1, any algorithm that explores a 2-LS in which

Figure 5. Optimal patterns for exploring: (a) LS(a = 2o; k = 2o+ 1; x = 2o+ 1) and (b) LS(a = 2o; k = 2o; x = 2o).
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Figure 7. Optimal patterns for exploring (a) 2-LS(a = 2o; k = 2o+ 1; x = 2o; b = 2o) and (b)
2-LS(a = 2o; k = 2o; x = 2o; b = 2o).

a and b are equal to 1 must have at least 3 misses in
the worst case. This leads to the following lemma.

Lemma 2. Any deterministic algorithm has at least 3
misses for exploring a 2� LS(a � 1; k; x; b � 1) in the
worst case.
Proof. The lemma is correct due to the optimal
exploration pattern for the example 2-LS(a = 1; k =
5; x = 3; b = 1), as shown in Figure 6(b). �

Here, a strategy for exploring R(x < T=2; y <
T=2) by subdividing R into LSs and 2-LSs is presented
(see Figure 1). Each dashed closed walk shows the
pattern of exploration of LSs and 2-LSs.

The following approaches, denoted by LEP, that
stand for LS exploration pattern can be obtained:

1. If x or y are even. Without loss of generality,
assume x is even. In this strategy, the third
parameter of LSs and 2-LSs is equal to the second
parameter of R.

Suppose that R is explored by LSs and 2-LSs
as proposed in Figures 5 and 7 from top to bot-
tom. As mentioned before, these drawing patterns
explore the environment without any misses. The
exploring continues until it is possible to use the
LSs or 2-LSs. In other words, R is explored by these
LSs and 2-LSs until the total number of remaining
unexplored cells, denoted by C 0, is less than T . In
this case, one robot is used for exploring C 0. Thus,
the number of misses in this case is less than T
which is optimal (see Figure 8);

2. If both x and y are odd, R is subdivided into R(x; 5)
and R(x; y � 5). Suppose R(x; 5) is explored as
mentioned in the Appendix, in Section A.2 from
the top.

If the remaining rows of R(x; 5), denoted by
r, that are not explored, are more than or equal
to T=10 + 4=5, then the remaining rows r and
R(x; y � 5) are completely explored as mentioned
in the Appendix, in Section A.2 and the previous
item 1, respectively. In fact, in this case, by
measuring the remaining cells, it can be found that

Figure 8. C0 explored optimally.

Figure 9. The area C00 including at most 2T � 4 cells.

this threshold guarantees that M is less than T .
Otherwise, in order to prevent unnecessary misses,
C 0 is combined with an LS or 2-LS that is on top of
C 0, denoted by C 00 (see Figure 9). Hence, according
to r < T=10 + 4=5, the remaining rows r and
unexplored cells R(x; y� 5) contain at most 2T � 4
cells. Therefore, two robots at most are required to
explore this area. Imagine one is exploring C" from
the right side to left side as drawing pattern shown
in Figure 10. Obviously, 3 misses may occur in this
part of C" in the worst case which are shown as
grey cells (see Figure 10). Also, the remaining cells
of C 00 can be explored by an LS and the number
of the corresponding misses is at most one. So, the
total number of misses is 4 in the worst case which
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Algorithm 1. LEP L-shaped exploration pattern.

Figure 10. Drawing pattern for C00.

is optimal. Recall that C 00 may include one cell.
In this case, the total number of misses is at most
T � 1.

The pseudocode of L-Shaped Exploration Pattern
(LEP) algorithm is given as Algorithm 1.

Theorem 2. When R(x < T=2; y < T=2) is explored
by LEP strategy, the number of misses is less than T
in the worst case.

Proof. According to LEP strategy, in each possible
case, the number of misses is less than T in the worst
case. �

Consider a BLS as an LS(a; k; x) such that the

Figure 11. An arbitrary BLS.

number of columns of its �rst b0 rows is equal to a > 1
and b0 � 1. Also, the total number of its cells is more
than or equal to T (see Figure 11). Also, LEP can be
applied to exploring the BLS environments.

Theorem 3. M in exploring a BLS is less than T
using LEP at the maximum time T .

Proof. This theorem can be proved by following the
proof of Theorem 2 quite closely. �
3.2. Exploring R(n;m)
In the previous subsection, LEP strategy was described
for exploring RGE, where n;m < T=2. Now, by
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Figure 12. (a) Subdividing R(n;m) into two
environments. (b) Exploring the even rectangle
R(n� n0;m� 5), n0 < T=2.

considering these methods, exploring a general size
environment can be stated. Clearly, n, m, and T
have considerable in
uence on the drawing exploration
pattern of RGE. Hence, the concepts and techniques
are covered which, as believed, should be presented
in any approach to exploration of RGE. When more
material can be covered, all exploration patterns can
be detected from the remaining section. Indeed, RGE
is considered in which n and m are odd, which is the
di�cult case, and an optimal algorithm is provided for
this case. Of course, optimal approaches are applied to
the other cases when n and/or m are even. However,
they are left to the reader which are not di�cult as the
case will be presented here.

In this approach, called REP (stands for rectan-
gular exploration pattern), R(n;m) is subdivided into
two RGE R(n;m�5) and R(n; 5) (Figure 12(a)). Based
on the Appendix, Section A.2, R(n; 5) and R(n;m�5)
are explored as follows. Since m � 5 is even, this area
is partitioned into blocks of size 2� T=2 (represents a
R(T=2; 2) environment) and the idea is to have cells
that �t exactly into one robot. In other words, in
exploring R(n;m� 5), imagine each robot has to visit
2 � T=2 blocks vertically from its top to down until
the remaining number of unexplored rows is less than
T=2, which is denoted by n0 (see Figure 12(b)). The
exploration of R(n0;m�5) is dependent on n0 and T=2.
This leads us to examine all cases as follows:

1. n0 is even. In this case, R(n0;m� 5) is explored in
the same manner as R(n;m� 5). In the worst-case
scenario, only one rectangle block remains, denoted
by x� y. It is worth noting that both x and y are
less than T=2. This block will link up to the two
unexplored cells from R(5; n) to form a BLS (see
Figure 13(a)). The white area is visited without
occurrence of any misses. Recall that the grey area
is a BLS. According to Theorem 3, T � 1 misses
occur in the worst case;

2. n0 is odd:

(a) If n0 � 5, then R(n0;m � 5) is subdivided into

Figure 13. (a) n0 is even. (b) n0 is odd.

R(5;m�5) and R(n0�5;m�5). So, R(5;m�5)
is explored as mentioned before. Also, the same
strategy used for exploring R(n;m � 5) can be
used for assigning the robots to R(n0�5;m�5)
(see Figure 13(b)). The row and column widths
of grey area are less than T=2. This area is
considered as a BLS and based on Theorem 3,
M is less than T ;

(b) If n0 � 3 and R(n0;m � 5) is combined with
T=2 � (m � 5) blocks from the top of it, then
follow the previous methods for exploring R(n�
n0 � T=2;m� 5).

So, the description of REP is as shown in Algorithm 2.
Finally, as mentioned, in all the cases, the number

of misses is less than T , so according to Observation 1,
nrb = nrbopt.

4. Exploring R(n;m) in the presence of
obstacles

In this section, we consider the Rectangular Grid Ex-
ploration problem in the presence of Obstacles (RGEO)
with a prede�ned time T . Under the widely believed
assumption that NP 6= P , this section starts by
giving a lemma in order to prove that there is no
algorithm for solving RGEO at polynomial time to
prevent unnecessary robots at the prede�ned time T .
Then, an algorithm that can approximate the problem
within a factor of 4 is presented.

Notice that the exploration problem plays a
similar role in the hardness of approximation as the
Hamiltonian cycle problem plays in the theory of NP
completeness. One result of this section is:

Lemma 3. The approximation factor of any determin-
istic algorithm for RGEO is at least 2.

Proof. Suppose that T is equal to the number of
free cells in RGEO. In this case, only one robot can
explore the general grid graph. Hence, a feasible
solution to the exploration problem exists if and only
if Hamiltonian cycle problem has a feasible solution.
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Algorithm 2. REP rectangular exploration pattern.

Interestingly enough, the problem of �nding the best
such lower bound of �-factor on Hamiltonian cycle is
intimately related to that of �nding a lower bound on
the exploring problem. Hence, according to Arora's
algorithm [15] and also the number of robots being an
integer, the approximation factor of any deterministic
algorithm for the exploring problem is 2. �
4.1. Approximation algorithm for RGEO
In this section, a 4-approximation algorithm for RGEO
is presented. Recall that the connected general grid
graph G corresponds to the grid environment E (Fig-
ure 14(a)). The proposed Algorithm 3, denoted by
EAO, is as follows.

Theorem 4. The algorithm EAO gives a 4-
approximation factor for RGEO.

To prove Theorem 4, EAO is explained in more
detail in the following. In other words, EAO receives
as input T and R(n;m) (i.e., a planar graph G) in the
presence of obstacles and computes a spanning tree S
of G (Figure 14(b)). It considers one arbitrary node as
the root of S (Figure 14(c)).

Let vL be the lowest leaf and T be the prede�ned
time. Imagine that EAO explores all vertices from
the lowest level until it satis�es the condition of the
exploration which means that the robot must return
to its starting position within the remaining steps. In

Figure 14. (a) An arbitrary general grid graph. (b) The
spanning tree of G. (c) One arbitrary node is considered
as the root of S.

other words, suppose that EAO assigns a robot rbi
exploring all the vertices from vL to p, which are shown
by black nodes in Figure 14(c). Let tvL;p be the number
of time steps that rbi takes to visit all the vertices from
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Algorithm 3. Psudocode for EAO.

vL to p. Let vvL;p be the shortest path from vL to p.
So, it is obvious that jEPij = tvL;p+ jvvL;pj. This leads
to the following equation:

T � jEPij = 0: (4)

To be clearer, jEPij is the length of the path that robot
rbi explores at prede�ned time T . Note that each robot
should return to its start position. Given that each
robot should visit the most possible vertices, Eq. (4)
holds.

Consider the highest ancestor of vL in EPi which
is shown by av (see Figure 14(c)). Since av has at most
three children, depending on EPi, three di�erent cases
may be distinguished and handled by EAO as follows:

1. Robot rbi only visits all children of av which means
it visits T=2 + 1 cells;

2. There are some vertices in the third branch of
node av which are not visited by rbi. Then, EAO
explores this branch from the lowest leaf to the
vertex w which satis�es Eq. (4) by robot rbi+1
(see Figure 15). Since the initial position of each
robot is the lowest leaf and EAO starts from the
lowest vertex and grows until the above condition
is satis�ed, jvav;pj = EPi \ EPi+1 �= T=4 in the
worst case. Also, rbi+1 may visit T=4 cells above
av which are visited by another robot. In fact,

Figure 15. The size of EPi \ EPi+1 �= T=4.

the height of branches may almost balance in the
worst case. Thus, rbi and rbi+1 together visit
T=2 +T=2�jvav;pj�T=4 > T=2 cells. It is possible
that rbi and rbi+1 visit one cell at the same time.
Note that EAO makes collision free path for rbi and
rbi+1 by following Lemma 4;

3. Robot rbi explores the �rst branch and some cells
of the second branch. In this case, rbi+1 explores
the remaining cells of the second branch and some
cells of the third branch, and rbi+2 explores the
remaining cells of the third branch and some nodes
above av where these nodes satisfy Eq. (4) (see
Figure 16). Based on Lemma 4, there exists
a collision-free path for rbi and rbi+1, so does,
for rbi+1 and rbi+2. As the previous case, the
intersection of the two exploration paths that have
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Figure 16. ri+2 visiting the vertices above av.

a node av in common is T=4 cells in the worst case.
Since EPi \ EPi+1 = T=4, EPi+1 \ EPi+2 = T=4,
and EPi+2 \EPi are constant, the number of cells
explored by rbi and rbi+1 is equal to T=2 in the
worst case.

Lemma 4. Consider EPi and EPi+1 where EPi \
EPi+1 = c. Suppose that rbi and rbi+1 visit cell c at
the same time within their exploration paths. Then,
there exists at least one collision-free path for rbi and
rbi+1.

Proof. Suppose that c is visited by rbi at time ti1
and ti2 and by rbi+1 at time ti+1

1 and ti+1
2 . Also, its

initial position and destination denoted by c1i(c1i+1)
are identical, since the exploration path for rbi(rbi+1)
is a cycle. If rbi and rbi+1 have intersection cell c, then
it is possible to change the initial path of rbi(rbi+1) to
another arbitrary cell as follows:

1. If ti2 = ti+1
2 and ti1 = ti+1

1 , or jti2 � ti+1
2 j � 2 and

ti2 6= ti+1
2 and ti1 = ti+1

1 , or (jti1 � ti+1
1 j � 2) and

ti1 6= ti+1
1 and ti2 = ti+1

2 ;
2. If jti2 � ti+1

2 j = 1 and ti2 6= ti+1
2 and ti1 = ti+1

1 , or
jti1 � ti+1

1 j = 1 and ti1 6= ti+1
1 and ti2 = ti+1

2 .
Changing the initial position of the robot rbi

from c1i to c2i in which ti1 + ti2 is minimum.

Based on the above descriptions, changing the initial
position of rbi(rbi+1) makes a collision-free path for
both of robots.

Proof of Theorem 4. In the algorithm EAO, in
the worst case, each of two neighbor robots visits
T=2 di�erent vertices together, while at most 2T
di�erent cells can be explored by two robots in optimal
algorithm. So, � = 2T=(T=2) = 4. �

Figure 17. A tight example on a spanning tree of an
arbitrary Rectangle Grid Environmental (RGE).

A tight example for any approximation algorithm
is given by an arbitrary RGE with T=2+1 columns that
is tree (see Figure 17). In fact, a simple inspection of
Figure 17 demonstrates that each of the two robots
visits at most T=2 cells in the best case. Since an
arbitrary spanning tree of RGE is considered as an
input of any approximation algorithm, factor of 4 is
the lower bound in the worst case.

5. Conclusion and future work

This study investigated the multi-robot exploration
problem in rectangle grid graphs at a prede�ned time
T . In the absence of obstacles, an optimal algorithm
to solve this problem was proposed. This problem was
also studied in the presence of obstacles. According
to the Hamiltonian cycle problem, it can be concluded
that there is no algorithm better than 2-approximation
factor for this version of the problem. Finally, a 4-
approximation algorithm was proposed.

In this study, it was shown that factor 4 was the
best lower bound for any deterministic algorithm on
an arbitrary spanning tree of RGE. However, giving
a good approximation algorithm for an arbitrary sub-
graph of RGE, which is not a tree, remains a clue for
future work. In addition, it is noticed that exploring
RGE in the presence of obstacles with the minimum
number of robots is NP-complete. As a future research
direction, it would be interesting to study this problem
where the input is some special �gure of the grid
environment such as polygon, alphabet grid, etc.
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Appendix

In this section, some small cases are considered to
explore the entire RGE. Thus, di�erent basic notions
and techniques are introduced in order to explore some
special environments here.
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Figure A.1. Optimal patterns for R(n; 3).

Exploring R(n; 3)
Here, an optimal approach, denoted by TRE, is de-
scribed for exploring R(n; 3). It is clear that T plays
a crucial role in exploring an arbitrary environment.
Consider three di�erent classes T = 6k+8, T = 6k+10,
and T = 6k + 12 (k = 0; 1; � � � ). Di�erent methods are
presented to visit all cells with the optimal number of
robots for each class (see Figure A.1).

Consider the area of fi that is explored by rbi.
The number of row widths of each fi is denoted by
hi. The presented drawing patterns are shown in Fig-
ure A.1(b) and (c) for the case hi > T=3. The number
of misses is equal to 1 for each of two neighboring robots
when T = 6k+8, in which the thick lines are repeated k
times (Figure A.1(b)). The presented drawing pattern
is shown in Figure 18(c) for the case T = 6k + 10.
The number of misses is equal to 2 for each of two
neighboring robots. The rest of this subsection shows
that the proposed approach is optimal.

Observation A.1. Since T=3 is not an integer, if hi
is less than or equal to T=3, then there is at least one
miss that occurs in exploring fi by rbi in the best case
by any optimal algorithm.

Let us suppose that hi is more than T=3. Also,
let the �rst, second, and third columns of R(n; 3) be
denoted by C1, C2, and C3, respectively. Clearly,
the number of row widths of C1, C2, and C3 of fi
can in
uence the number of misses that occur during
exploration. In fact, a few columns can make a good

Figure A.2. fi with hi > bT=3c.

piece of evidence that neighboring robots may in
uence
each other and determine the number of misses in the
environment. This is illustrated in Figure A.2, drawing
pattern of fi makes a corridor in C3. Then, there are
some cells that the neighboring robot rbj of rbi must
visit more than once. Let rbj be the complementary
robot of rbi. In this case, one would like to avoid having
a corridor as possible to reduce the number of misses.

Lemma A.1. Given R(n; 3), suppose that hi is more
than T=3 for each arbitrary robot rbi. Let rbi and rbj
be two neighboring robots; rbj is the complementary of
rbi. Then, mi +mj for any deterministic algorithm is
equal to the number of misses in TRE strategy in the
worst case.

Proof. For each arbitrary rbi, since hi is more than
T=3, it makes a corridor to one of Ci(i = 1; 2; 3) that
is consisting of at least one cell, denoted by C 0i. In
the case, the size of C 0i equals 1, at least one miss
occurs for rbj when crossing the corridor C 0i. Hence,
the number of misses in the case T = 6k+ 8 is optimal
in TRE. It remains to prove that TRE explores the
environment optimally in the other case. Suppose that
T = 10; by considering all the cases, there are at least
two misses that occur for two complementary robots in
R(n; 3). By induction, the number of misses is handled
correctly, meaning that M is optimal, in this case as
well. �
A.2. Exploring R(n; 5)
In this section, a method is introduced to explore
R(n; 5) optimally, denoted by FRE. Consider di�erent
�ve classes T0 = 10k, T1 = 10k + 12, T2 = 10k + 14,
T3 = 10k + 16, and T4 = 10k + 18 (k = 0; 1; � � � ).

Di�erent optimal drawing patterns for each class
are provided in which thick pattern lines are repeated k
times (see Figure A.3). According to these exploration
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Figure A.3. The presented patterns for R(n; 5).

patterns, no miss occurs for the robots except for the
last robot in case perhaps there is at least one cell left to
explore at the end of the environment in the worst case.
Since one robot must be assigned to the remaining cells,
there are T � 1 misses in the worst case. Then, based
on Observation 1, the proposed method is optimal.

Also, one should restrict attention to a special
case where T = 8. Imagine R(n; 5) is explored from
top to down. Various approaches are inspected for
exploring R(n; 5) in this case and realize that at least
one miss occurs on the top of the environment (see
Figure A.4). The following lemma can be obtained:

Lemma A.2. For T = 8, there is at least one miss for
exploring the top of R(n; 5).

Proof. By inspection. �

Lemma A.3. FRE explores R(n; 5) optimally.

Proof. Based on Lemma A.2 and extending drawing
pattern of Figure A.4, FRE gives an optimal pattern
to explore R(n; 5). �
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