REFERENCES;
[1] ”Handbook of Hybrid Systems Control”, J. Lunze and F. Lamnabhi-Lagarrigue, Eds., Cambridge University Press (2009).
[2] Sun, Z. and Sam Ge, S. ”Switched Linear Systems, Control and Design”, E. D. Sontag, M. Thoma, A. Isidori and J. H. van Schuppen, Eds., Springer-Verlag London (2005).
[3] Zhang, L., Zhu, Y., and Shi, P. et al. ”Time-dependent Switched Discrete-time Linear Systems: Control and Filtering”, J. Kacprzyk, Ed., Springer International Publishing Switzerland (2016).
[4] Liberzon, D., ”Switching in Systems and Control”, T. Basar, Bikhauser Boston (2003).
[5] Zhao, W., Kao, Y., Niu, B. et al. ”Control Synthesis of Switched Systems”, Springer International Publishing Switzerland (2017).
[6] Sun, Z. and Sam Ge, S. ”Stability Theory of Switched Dynamical Systems”, A. Isidori, J. H. van Schuppen, E. D. Sontag, M. Thoma and M. Krstic, Eds., Springer-Verlag London (2011).
[7] Liberzon, D. and Morse, A. S., ”Basic problems in stability and design of switched systems”, IEEE Control Syst. Mag. , 19(5), pp. 59-70 (1999).
[8] Hai Lin, H. and Antsaklis, P. J. ”Stability and stabilizability of switched linear systems: a survay of recent results”, IEEE Trans. Autom. Control, 54(2), pp. 308-322 (2009).
[9] Decarlo, R. A., Branicky, M. S., Pettersson, S. et al. ”Perspectives and results on the stability and stabilizability of hybrid systems”, Proceedings of the IEEE, 88(7), pp. 1069-1082 (2000).
[10] Shorten, R., Wirth, F., Mason, O. et al. ”Stability criteria for switched and hybrid systems”, SIAM Review, 49(4), pp. 545-592 (2007).
[11] Deaecto, G. S., Geromel, J. C., Garcia, F. S. et al. ”Switched affine systems control design with application to DC-DC converters”, IET Control Theory A., 4(7), pp. 1201-1210 (2010).
[12] Baldi, S., Papachristodoulou, A. and Kosmatopoulos, E. B., ”Adaptive pulse width modulation design for power converters based on affine switched systems”, Nonlinear Anal-Hybri., 30, pp. 306-322 (2018).
[13] Yoshimora, V. L., Assuncao, E., Pires da Silva, E. R. et al. ”Observer-Based Control Design for Switched Affine Systems and Applications to DCDC Converters”, Journal of Control, Automation and Electrical Systems, 24(4), pp. 535-543 (2013).
[14] Corona, D., Buisson, J., De Schutter, B. et al. ”Stabilization of switched affine systems: An application to the buck-boost converter”, Proceedings of American Control Conf., New York, pp. 6037-6042 (2007).
[15] Albea, C. Garcia, G. and Zaccarian, L. ”Hybrid dynamic modeling and control of switched affine systems: application to DC-DC converters”, IEEE 54th Annual Conf. on Decision and Control, Osaka, Japan, pp. 2264-2269 (2015).
[16] Beneux, G., Riedinger, P., Daafouz, J. et al. ”Adaptive stabilization of switched affine systems with unknown equilibrium points: application to power converters”, Automatica, 99, pp. 82-91 (2019).
[17] Hejri, M., Giua, A. and Mokhtari, H. ”On the complexity and dynamical properties of mixed logical dynamical systems via an automatonbased realization of discrete-time hybrid automaton”, Int. J. of Robust Nonlin., 28(16), pp. 4713-4746 (2018).
[18] Deaecto, G. S. and Geromel, J. C. ”Stability analysis and control design of discrete-time switched affine systems”, IEEE Trans. Autom. Control, 62(8), pp. 4058-4065 (2017).
[19] Egidio, L. N., and Deaecto, G. S. ”Novel practical stability conditions for discrete-time switched affine systems”, IEEE Trans. Autom. Control, 64(11), pp. 4705-4710 (2019).
[20] Albea Sanchez, C., Garcia, G., Sabrina, H. et al. ”Practical stabilisation of switched affine systems with dwell-time guarantees”, IEEE Trans. Autom. Control, 64(11), pp. 4811-4817 (2019).
[21] Zhai, G. and Michel, A. N. ”On practical stability of switched systems”, Proceedings of the 41st IEEE Conf. on Decision and Control, 3, doi=10.1109/CDC.2002.1184415, pp. 3488-3493 (2002).
[22] Zhai, G. and Michel, A. N. ”Generalized practical stability analysis of discontinuous dynamical systems”, 42nd IEEE International Conf. on Decision and Control (IEEE Cat. No.03CH37475), 2, doi=10.1109/CDC.2003.1272851, pp. 1663-1668 (2003).
[23] Xu, X., Zhai, G. and He, S. ”Some results on practical stabilizability of discrete-time switched affine systems”, Nonlinear Anal-Hybri., 4(1), pp. 113–121 (2010).
[24] Xu, X., Zhai, G. and He, S. ”On practical stabilizability of discrete-time switched affine systems”, Joint 48th IEEE Conf. on Decision and Control, Shanghai, China, pp. 2144-2149 (2009).
[25] Xu, X., Zhai, G. and He, S. ”On practical asymptotic stabilizability of switched affine systems”, Nonlinear Anal-Hybri., 2(1), pp. 196-208 (2008).
[26] Xu, X. and Zhai, G. ”Practical stability and stabilization of hybrid and switched systems”, IEEE Trans. Autom. Control, 50(11), pp. 1897-1903 (2005).
[27] Xu, X., Zhai, G. and He, S. ”Stabilizability and practical stabilizability of continuous-time switched systems: a unified view”, Proceedings of the 2007 American Control Conf., New York City, USA, pp. 663-668 (2007).
[28] Trofino, A., Assmann, D., Scharlau, C. C. et al. ”Switching rule design for switched dynamic systems with affine vector fields”, IEEE Trans. Autom. Control, 54(9), pp. 2215-2222 (2009).
[29] Scharlau, C. C., de Oliveria, M. C., Trofino, A. et al. ”Switching rule design for affine switched systems using a max-type composition rule”, IEEE Trans. Autom. Control, 68, pp. 1-8 (2014).
[30] Daafouz, J., Riedinger, P. and Iung C. ”Stability analysis and control synthesis for switched systems: a switched Lyapunov function approach”, IEEE Trans. Autom. Control, 47(11), pp. 1883-1887 (2002).
[31] Branicky, M. S. ”Multiple Lyapunov functions and other analysis tools for switched and hybrid systems”, IEEE Trans. Autom. Control, 43(4), pp. 475-482 (1998).
[32] Kuiava, R., Ramos, R. A., Pota, H. R. et al. ”Practical stability of switched systems without a common equilibria and governed by a time-dependent switching signal”, Eur. J. Control, 19(3), pp. 206-213 (2013).
[33] Perez, C., Azhmyakov, V. and Poznyak, A. ”Practical stabilization of a class of switched systems: dwell-time approach”, IMA J. of Math. Control I., 32(4), pp. 689-702 (2015).
[34] Hetel, L. and Fridman, E. ”Robust Sampled-data control of switched affine systems”, IEEE Trans. Autom. Control, 58(11), pp. 2922-2928 (2013).
[35] Senesky, M., Eirea, G. and Koo, T. J. ”Hybrid Modeling and control of power electronics”, Hybrid Systems: Computations and Control, Lecture Notes in Computer Science, Springer, pp. 450-465 (2003).
[36] Albea Sanchez, C., Lopez Santos, O., Zambrano Prada, D. A. et al. ”On the Practical Stability of Hybrid Control Algorithm With Minimum Dwell Time for a DC-AC Converter”, IEEE Trans. Control Syst. Technol., 27(6), pp. 2581-2588 (2019).
[37] Blondel, V. and Tsitsiklis, J. N. ”NP-Hardness of some linear control design problems”, SIAM J. Control and Optim., 35(6), pp. 2118-2127 (1997).
[38] Wicks, M., Peleties, P., and DeCarlo, R. ”Switched controller synthesis for the quadratic stabilization of a pair of unstable linear systems”, Eur. J. Control, 4(2), pp. 140-147 (1998).
[39] Trofino, A., Scharlau, C. C., and Coutinho, D. F. ”Corrections to ”Switching rule design for switched dynamic systems with affine vector fields””, IEEE Trans. Autom. Control, 57(4), pp. 1080-1082 (2014).
[40] Deaecto, G. S. ”Dynamic output feedback H1 control of continuous-time switched affine systems”, Automatica, 71, pp. 44-49 (2016).
[41] Hauroigne, P., Riedinger, P. and Iung, C. ”Switched affine systems using sampled-data controllers: robust and guaranteed stabilization”, IEEE Trans. Autom. Control, 56(12), pp. 2929-2935 (2011).
[42] Poznyak, A., Polyakov, A. and Azhmyakov, V. ”Attractive Ellipsoids in Robust Control”, T. Basar, Ed., Birkhauser (2014).
[43] Boyd, S., El Ghaoui, L., Feron, E. et al. ”Linear Matrix Inequalities in Systems and Control Theory”, Society for Industrial and Applied Mathematics, SIAM (1994).
[44] VanAntwerp, J. G. and Braatz, R. D. ”A tutorial on linear and bilinear matrix inequalities”, J. Process Contr., 10(4), pp. 365-385 (2000).
[45] Lofberg, J. ”YALMIP: A toolbox for modeling and optimization in MATLAB”, IEEE International Symposium on Computer Aided Control Systems Design, Taipei, Taiwan, pp. 284-289 (2004).
[46] Kocvara, M. and Stingl, M. ”PENBMI Users Guide (Version 2.1)”, www.penopt.com (2006).
[47] Mari´ethoz, S., Alm´er, S., Bˆaja, M. et al. ”Comparison of Hybrid Control Techniques for Buck and Boost DC-DC Converters”, IEEE Trans. Control Syst. Technol., 18(5), pp. 1126-1145 (2010).
[48] Deaecto, G. S. and Santos, G. C. ”State feedback H1 control design of continuous-time switched-affine systems”, IET Control Theory A., 9(10), pp. 1511-1516 (2014).