Global practical stabilization of discrete-time switched affine systems via switched Lyapunov functions and state-dependent switching functions

Document Type : Article

Author

Department of Electrical Engineering, Sahand University of Technology, Sahand New Town, Tabriz, P.O. Box 51335-1996, Iran

Abstract

This paper addresses the problem of global practical stabilization
of discrete-time switched affine systems via switched Lyapunov
functions with the objectives of achieving less conservative
stability conditions and less conservative size of the ultimate
invariant set of attraction. The main contribution is to propose a
state-dependent switching controller synthesis that guarantees
simultaneously the invariance and global attractive properties of a
convergence set around a desired equilibrium point. This set is
constructed by the intersection of a family of ellipsoids associated
with each of switched quadratic Lyapunov functions. The global
practical stability conditions are proposed as a set of Bilinear
Matrix Inequalities (BMIs) for which an optimization problem is
established to minimize the size of the ultimate invariant set of
attraction. A DC-DC buck converter is considered to illustrate the
effectiveness of the proposed stabilization and controller synthesis
method.

Keywords


REFERENCES;
[1] ”Handbook of Hybrid Systems Control”, J. Lunze and F. Lamnabhi-Lagarrigue, Eds., Cambridge University Press (2009).
[2] Sun, Z. and Sam Ge, S. ”Switched Linear Systems, Control and Design”, E. D. Sontag, M. Thoma, A. Isidori and J. H. van Schuppen, Eds., Springer-Verlag London (2005).
[3] Zhang, L., Zhu, Y., and Shi, P. et al. ”Time-dependent Switched Discrete-time Linear Systems: Control and Filtering”, J. Kacprzyk, Ed., Springer International Publishing Switzerland (2016).
[4] Liberzon, D., ”Switching in Systems and Control”, T. Basar, Bikhauser Boston (2003).
[5] Zhao, W., Kao, Y., Niu, B. et al. ”Control Synthesis of Switched Systems”, Springer International Publishing Switzerland (2017).
[6] Sun, Z. and Sam Ge, S. ”Stability Theory of Switched Dynamical Systems”, A. Isidori, J. H. van Schuppen, E. D. Sontag, M. Thoma and M. Krstic, Eds., Springer-Verlag London (2011).
[7] Liberzon, D. and Morse, A. S., ”Basic problems in stability and design of switched systems”, IEEE Control Syst. Mag. , 19(5), pp. 59-70 (1999).
[8] Hai Lin, H. and Antsaklis, P. J. ”Stability and stabilizability of switched linear systems: a survay of recent results”, IEEE Trans. Autom. Control, 54(2), pp. 308-322 (2009).
[9] Decarlo, R. A., Branicky, M. S., Pettersson, S. et al. ”Perspectives and results on the stability and stabilizability of hybrid systems”, Proceedings of the IEEE, 88(7), pp. 1069-1082 (2000).
[10] Shorten, R., Wirth, F., Mason, O. et al. ”Stability criteria for switched and hybrid systems”, SIAM Review, 49(4), pp. 545-592 (2007).
[11] Deaecto, G. S., Geromel, J. C., Garcia, F. S. et al. ”Switched affine systems control design with application to DC-DC converters”, IET Control Theory A., 4(7), pp. 1201-1210 (2010).
[12] Baldi, S., Papachristodoulou, A. and Kosmatopoulos, E. B., ”Adaptive pulse width modulation design for power  converters based on affine switched systems”, Nonlinear Anal-Hybri., 30, pp. 306-322 (2018).
[13] Yoshimora, V. L., Assuncao, E., Pires da Silva, E. R. et al. ”Observer-Based Control Design for Switched Affine Systems and Applications to DCDC Converters”, Journal of Control, Automation and Electrical Systems, 24(4), pp. 535-543 (2013).
[14] Corona, D., Buisson, J., De Schutter, B. et al. ”Stabilization of switched affine systems: An application to the buck-boost converter”, Proceedings of American Control Conf., New York, pp. 6037-6042 (2007).
[15] Albea, C. Garcia, G. and Zaccarian, L. ”Hybrid dynamic modeling and control of switched affine systems: application to DC-DC converters”, IEEE 54th Annual Conf. on Decision and Control, Osaka, Japan, pp. 2264-2269 (2015).
[16] Beneux, G., Riedinger, P., Daafouz, J. et al. ”Adaptive stabilization of switched affine systems with unknown equilibrium points: application to power converters”, Automatica, 99, pp. 82-91 (2019).
[17] Hejri, M., Giua, A. and Mokhtari, H. ”On the complexity and dynamical properties of mixed logical dynamical systems via an automatonbased realization of discrete-time hybrid automaton”, Int. J. of Robust Nonlin., 28(16), pp. 4713-4746 (2018).
[18] Deaecto, G. S. and Geromel, J. C. ”Stability analysis and control design of discrete-time switched affine systems”, IEEE Trans. Autom. Control, 62(8), pp. 4058-4065 (2017).
[19] Egidio, L. N., and Deaecto, G. S. ”Novel practical stability conditions for discrete-time switched affine systems”, IEEE Trans. Autom. Control, 64(11), pp. 4705-4710 (2019).
[20] Albea Sanchez, C., Garcia, G., Sabrina, H. et al. ”Practical stabilisation of switched affine systems with dwell-time guarantees”, IEEE Trans. Autom. Control, 64(11), pp. 4811-4817 (2019).
[21] Zhai, G. and Michel, A. N. ”On practical stability of switched systems”, Proceedings of the 41st IEEE Conf. on Decision and Control, 3, doi=10.1109/CDC.2002.1184415, pp. 3488-3493 (2002).
[22] Zhai, G. and Michel, A. N. ”Generalized practical stability analysis of discontinuous dynamical systems”, 42nd IEEE International Conf. on Decision and Control (IEEE Cat. No.03CH37475), 2, doi=10.1109/CDC.2003.1272851, pp. 1663-1668 (2003).
[23] Xu, X., Zhai, G. and He, S. ”Some results on practical stabilizability of discrete-time switched affine systems”, Nonlinear Anal-Hybri., 4(1), pp. 113–121 (2010).
[24] Xu, X., Zhai, G. and He, S. ”On practical stabilizability of discrete-time switched affine systems”, Joint 48th IEEE Conf. on Decision and Control, Shanghai, China, pp. 2144-2149 (2009).
[25] Xu, X., Zhai, G. and He, S. ”On practical asymptotic stabilizability of switched affine systems”, Nonlinear Anal-Hybri., 2(1), pp. 196-208 (2008).
[26] Xu, X. and Zhai, G. ”Practical stability and stabilization of hybrid and switched systems”, IEEE Trans. Autom. Control, 50(11), pp. 1897-1903 (2005).
[27] Xu, X., Zhai, G. and He, S. ”Stabilizability and practical stabilizability of continuous-time switched systems: a unified view”, Proceedings of the 2007 American Control Conf., New York City, USA, pp. 663-668 (2007).
[28] Trofino, A., Assmann, D., Scharlau, C. C. et al. ”Switching rule design for switched dynamic systems with affine vector fields”, IEEE Trans. Autom. Control, 54(9), pp. 2215-2222 (2009).
[29] Scharlau, C. C., de Oliveria, M. C., Trofino, A. et al. ”Switching rule design for affine switched systems using a max-type composition rule”, IEEE Trans. Autom. Control, 68, pp. 1-8 (2014).
[30] Daafouz, J., Riedinger, P. and Iung C. ”Stability analysis and control synthesis for switched systems: a switched Lyapunov function approach”, IEEE Trans. Autom. Control, 47(11), pp. 1883-1887 (2002).
[31] Branicky, M. S. ”Multiple Lyapunov functions and other analysis tools for switched and hybrid systems”, IEEE Trans. Autom. Control, 43(4), pp. 475-482 (1998).
[32] Kuiava, R., Ramos, R. A., Pota, H. R. et al. ”Practical stability of switched systems without a common equilibria and governed by a time-dependent switching signal”, Eur. J. Control, 19(3), pp. 206-213 (2013).
[33] Perez, C., Azhmyakov, V. and Poznyak, A. ”Practical stabilization of a class of switched systems: dwell-time approach”, IMA J. of Math. Control I., 32(4), pp. 689-702 (2015).
[34] Hetel, L. and Fridman, E. ”Robust Sampled-data control of switched affine systems”, IEEE Trans. Autom. Control, 58(11), pp. 2922-2928 (2013).
[35] Senesky, M., Eirea, G. and Koo, T. J. ”Hybrid Modeling and control of power electronics”, Hybrid Systems: Computations and Control, Lecture Notes in Computer Science, Springer, pp. 450-465 (2003).
[36] Albea Sanchez, C., Lopez Santos, O., Zambrano Prada, D. A. et al. ”On the Practical Stability of Hybrid Control Algorithm With Minimum Dwell Time for a DC-AC Converter”, IEEE Trans. Control Syst. Technol., 27(6), pp. 2581-2588 (2019).
[37] Blondel, V. and Tsitsiklis, J. N. ”NP-Hardness of some linear control design problems”, SIAM J. Control and Optim., 35(6), pp. 2118-2127 (1997).
[38] Wicks, M., Peleties, P., and DeCarlo, R. ”Switched controller synthesis for the quadratic stabilization of a pair of unstable linear systems”, Eur. J. Control, 4(2), pp. 140-147 (1998).
[39] Trofino, A., Scharlau, C. C., and Coutinho, D. F. ”Corrections to ”Switching rule design for switched dynamic systems with affine vector fields””, IEEE Trans. Autom. Control, 57(4), pp. 1080-1082 (2014).
[40] Deaecto, G. S. ”Dynamic output feedback H1 control of continuous-time switched affine systems”, Automatica, 71, pp. 44-49 (2016).
[41] Hauroigne, P., Riedinger, P. and Iung, C. ”Switched affine systems using sampled-data controllers: robust and guaranteed stabilization”, IEEE Trans. Autom. Control, 56(12), pp. 2929-2935 (2011).
[42] Poznyak, A., Polyakov, A. and Azhmyakov, V. ”Attractive Ellipsoids in Robust Control”, T. Basar, Ed., Birkhauser (2014).
[43] Boyd, S., El Ghaoui, L., Feron, E. et al. ”Linear Matrix Inequalities in Systems and Control Theory”, Society for Industrial and Applied Mathematics, SIAM (1994).
[44] VanAntwerp, J. G. and Braatz, R. D. ”A tutorial on linear and bilinear matrix inequalities”, J. Process Contr., 10(4), pp. 365-385 (2000).
[45] Lofberg, J. ”YALMIP: A toolbox for modeling and optimization in MATLAB”, IEEE International Symposium on Computer Aided Control Systems Design, Taipei, Taiwan, pp. 284-289 (2004).
[46] Kocvara, M. and Stingl, M. ”PENBMI Users Guide (Version 2.1)”, www.penopt.com (2006).
[47] Mari´ethoz, S., Alm´er, S., Bˆaja, M. et al. ”Comparison of Hybrid Control Techniques for Buck and Boost DC-DC Converters”, IEEE Trans. Control Syst. Technol., 18(5), pp. 1126-1145 (2010).
[48] Deaecto, G. S. and Santos, G. C. ”State feedback H1 control design of continuous-time switched-affine systems”, IET Control Theory A., 9(10), pp. 1511-1516 (2014).