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Abstract. The present study addresses the problem of global practical stabilization
of discrete-time switched a�ne systems using switched Lyapunov functions and aims to
achieve less conservative stability conditions and less conservative size for the ultimate
invariant set of attraction. This study also makes its main contribution by proposing
a state-dependent switching controller synthesis that ensures the invariance and global
attractive properties of a convergence set around a desired equilibrium point. This set
is constructed through the intersection of a family of ellipsoids associated with each of
switched quadratic Lyapunov functions. The global practical stability conditions are
proposed as a set of Bilinear Matrix Inequalities (BMIs) for which an optimization problem
is established to minimize the size of the ultimate invariant set of attraction. A DC-DC
buck converter is considered to illustrate the e�ectiveness of the proposed stabilization and
controller synthesis method.
© 2021 Sharif University of Technology. All rights reserved.

1. Introduction

Switched systems are de�ned as a set of continuous
dynamics featuring a controlled switching function that
decides which continuous dynamic should be selected
from this set at any time for the current continuous
state evolution [1]. Not only do switched systems
gain signi�cance in the study of many real-world
systems such as power systems and power electron-
ics, automotive control, aircraft and air-tra�c control
as well as network control systems, but also they
should be properly investigated for theoretical reasons
while studying dynamical systems subjected to sud-
den parameter variations and assessing multi-controller
switching techniques [2,3]. Although switched systems
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occupy a rich proportion of the literature with related
several books [2{6] and survey papers [7{10] in this
context, a majority of studies conducted in this domain
considered a common equilibrium point for all isolated
subsystems. However, one of the most signi�cant
subclasses of switched systems is the switched a�ne
systems that are very common in practice, especially
in power electronics [11{17].

In this speci�c subclass, the equilibrium point
varies discontinuously during switching among sub-
systems; therefore, to achieve asymptotic stability at
a desired equilibrium point, the switching frequency
approaches in�nity, which is not realizable in practice
[18{20]. One of the well-known solutions to the
problem of chattering phenomenon is to consider an
upper bound on the frequency of switching functions
through time discretization. This is a motivation for
the analysis and synthesis of switched a�ne systems
in the discrete-time domain. In addition, since the
implementation of any controller nowadays is handled
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by computers and discrete-time samplers, study of the
discrete-time systems and their computer-based control
is of particular signi�cance.

However, due to the frequency limitations for the
switching signal, stability of a set can be achieved
rather than a particular point [21,22]. As a re-
sult, many theoretical �ndings about the stability of
switched systems with a common equilibrium point
cannot be directly applied to the stability analysis of
switched a�ne systems without any common equilib-
rium point. In this regard, the notion of practical
stability has been proposed in the literature to analyze
the stability of switched systems with no common
equilibria [23{27].

There are two main types of Lyapunov functions
used for stability analysis of switched systems, namely
common and multiple Lyapunov functions. How-
ever, there are numerous examples of stable switched
systems that do not admit any common Lyapunov
function [4,7]. In this respect, to achieve less conserva-
tive stability conditions, the rich and more complex
classes of multiple Lyapunov functions were utilized
to stabilize the switched systems, among which max-
type Lyapunov functions [28,29], min-type Lyapunov
functions [19], and switched Lyapunov functions [30{
34] can be named. In this study, the switched quadratic
Lyapunov functions are employed to design switching
rules for the global practical stabilization of discrete-
time switched a�ne systems.

1.1. Practical stabilization of switched a�ne
systems

The practical stabilization problem of switched systems
without common equilibria or, in a particular case,
switched a�ne systems has been investigated over the
last years in the form of either a general or particular
problem formulation, especially those problems related
to the switching power converters [12,35,36]. There are
very few studies on the global practical stabilization
of discrete-time switched a�ne systems using multi-
ple Lyapunov functions and state-dependent switching
functions. Here, a brief review of the most relevant
studies is presented.

While local practical stability as well as stabiliza-
tion of continuous-time nonlinear time-variant switched
systems through a single Lyapunov-like function were
proposed in [26], global practical asymptotic stabi-
lization of time-invariant switched nonlinear systems
in continuous-time and discrete-time domains was in-
vestigated using a single quadratic Lyapunov function
in [23,25], respectively. However, these studies did
not propose any constructive and systematic way to
compute the respective Lyapunov functions.

In [19], the global practical stability conditions
were proposed as a set of Bilinear Matrix Inequalities
(BMIs) for discrete-time switched a�ne systems using

min-type multiple Lyapunov functions. In this study, a
single ellipsoidal set containing an actual convergence
set was employed as an invariant set of attraction, thus
leading to more conservative results in size estimation
of the ultimate convergence set. Moreover, the au-
thors proposed a more complex methodology with two
di�erent theorems, each of which was associated with
the attractive and invariant properties, to compute the
�nal invariant set of attraction.

A set of BMI conditions was proposed in [34]
for the global practical stabilization of continuous-
time switched a�ne systems in the framework of
sampled data systems using switched Lyapunov func-
tions. However, only the attractiveness property of the
convergence set can be guaranteed.

In [18,20,34], the global practical stability condi-
tions were proposed for discrete-time and continuous-
time switched a�ne systems, respectively, using a
common quadratic Lyapunov function. These studies
shared one limitation, that is, the invariant set of
attraction must contain an equilibrium point that
belongs to a predetermined set of attainable ones. This
can be a barrier to the applicability of the proposed
conditions because these equilibrium points are gener-
ated in a (Schur or Hurwitz) stable matrix calculated
by the convex combination of each of a�ne subsystems.
However, investigating the existence of a stable matrix
as a convex combination of a family of matrices requires
special algorithms that can be represented as an NP-
hard problem [28,37{40]. This limitation may be
relaxed by applying multiple Lyapunov functions and
proposing less conservative stability conditions [20,34].

The problem of robust and global practical stabi-
lization of the switched a�ne systems in the discrete-
time domain was addressed in [41]. The proposed
switching functions here were established based on the
existence of a common Lyapunov function; however, no
constructive method was proposed to calculate them.
In [32,33], the local and global practical stabilization of
continuous-time nonlinear switched systems was inves-
tigated, respectively, using time-dependent switching
instead of its state-dependent counterpart as well as
switched Lyapunov functions.

1.2. The contributions, objectives, and
organization of this paper

To the best of our knowledge, according to the pre-
ceding literature review, it is for the �rst time that
the switched quadratic Lyapunov function has been
adopted in the context of global practical stabilization
of discrete-time switched a�ne systems using state-
dependent switching rules that guarantee invariant and
attractive properties of the convergence set simulta-
neously. Use of multiple Lyapunov functions yields
less conservative stability conditions. In addition,
application of a family of the corresponding ellipsoids
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around the desired equilibrium point instead of a single
one and guidance of the state trajectories to their in-
tersection yield a less conservative size for the ultimate
invariant set of attraction. In this regard, the theoret-
ical foundations for practical stability of discrete-time
switched systems without a common equilibrium point
are presented through some basic de�nitions of di�erent
types of practical stability in Section 2 and Lemma 1
in Section 3. Next, a state-dependent switching rule
(switching Algorithm 1) is proposed together with a
set of BMI-based stability conditions in Theorems 1
and 2 through which the global practical stability of
discrete-time switched a�ne systems is guaranteed. In
Section 4, the optimization problems corresponding
to the stability conditions of Theorems 1 and 2 are
formulated to minimize the size of the invariant set of
attraction. Finally, Section 5 discusses the applicability
of the proposed stabilization method to a DC-DC
buck converter as an illustrative example. Finally,
concluding remarks are made in Section 6.

Notation: R, R�0, and Z�0 are used to denote the
set of real, nonnegative real, and nonnegative integer
numbers, respectively. Moreover RN and Rm�n denote
the real-valued N -dimensional column vectors and m�
n matrices, respectively. Further, In, 1n, and 0m�n
denote the n�n identity matrix, n�n matrix with all
elements of 1 and the m� n zero matrix, respectively.
In addition 8 and 9 present the \all" and \there exists",
respectively and ) is the logical implication. For
matrix M 2 Rm�n, MT denotes its transpose and
for a square matrix M 2 Rn�n, M�1, tr(M), and
�i(M) are inverse, trace, and ith eigenvalue of M ,
respectively. Moreover �max(M) and �min(M) are the
largest and smallest eigenvalues of M , respectively.
For x 2 Rn, jjxjj denotes the Euclidean vector norm,
i.e., jjxjj = (xTx)1=2. Further, M � 0 and M � 0
indicate that M is a negative de�nite and negative
semi-de�nite matrix, respectively. For the set I, jIj
shows the number of its elements (cardinality). In
symmetric matrices, � denotes each of their symmetric
blocks. Consider the set K = f1; : : : ; Ng as a collection
of N �rst positive integer numbers. Then, the convex
combination of the matrices fM1; : : : ;MNg is denoted
by M� =

P
i2K �iMi with � 2 � where � := f� 2

RN jj�i � 0;
P
i2K �i = 1g is the unitary simplex.

2. Problem statement

The discrete-time switched a�ne system is considered
as follows:

x(k + 1)=A�(x(k);k)x(k)+b�(x(k);k); x(0)=x0; (1)

where k 2 Z�0 is the discrete-time instant, x(k) 2
Rn is the state, and �(x(k); k):Rn � Z�0 ! K is
a switching function, which is continuous from right

everywhere, that selects one of the N available subsys-
tems (Ai; bi); i 2 K at any instant of time k 2 Z�0. In
case the switching law does not depend on time, i.e.,
if for each x0 2 Rn, �(x0; k1) = �(x0; k2), 8 k1; k2 2
Z�0, the signal is said to be state-dependent. This
is the class of switching signals to be discussed here.
This study also intends to design a state-dependent
switching function �(x(k)) to apply the asymptotic
convergence of state trajectories x(k); k 2 Z�0 to
the neighborhood of a desired equilibrium point for
all initial conditions x0 2 Rn. In general, such an
equilibrium point does not coincide with any other
isolated subsystems, namely, xei = (In � Ai)�1bi. For
a desired set point xe, it is possible to reformulate the
stabilization problem around the null equilibrium point
by de�ning the error state vector e(k) = x(k)�xe; 8k 2
Z�0 that complies with the error dynamics as:

e(k + 1) = A�(e(k))e(k) + l�(e(k)); e(0) = e0; (2)

with �(e(k)) = �(x(k)�xe), li = (Ai� In)xe + bi;8i 2
K. In addition, this study attempts to design the the
switching function �(e(k)) using a switched quadratic
Lyapunov function v(e(k)) = V�(e(k)) = e(k)TPie(k),
where Pi = PTi � 0 such that the set V de�ned as:

V =
N\
i=1

Ei; Ei = fe(k) 2 Rnjje(k)TPie(k) � 1g; (3)

is an invariant set of attraction for the switched a�ne
system (2) according to the following de�nition.

De�nition 1. The bounded set V � D containing a
ball Br = fe 2 Rnjjjejj � rg, r > 0 is an invariant
set of attraction in a given domain D � Rn for
System (2) by the switching function �(e(k)) if the
following conditions are simultaneously satis�ed:

(a) 0n�1 2 V,
(b) If e(k) 2 V then e(k+1) = A�(e(k))e(k)+ l�(e(k)) 2V,
(c) If e(0) 2 D � V, there is a T = T (e(0)) � 0 such

that e(k) 2 V, 8k � T .

Based on condition (b), the trajectories starting
within V can, never escape from it; therefore, according
to (a) and boundedness of V, they will remain around
the null set point. In case conditions (a) and (b) are
satis�ed, the set V will be invariant for System (2)
under the switching function �(e(k)). Furthermore,
according to conditions (a) and (c), the trajectories
starting outside V evolve in time towards the point
e(k) = 0n�1, but they will never reach it. In this case,
the set V is claimed to be attractive for System (2)
under the switching function �(e(k)).

De�nition 1 falls into the category of practical
stability, indicating that the trajectories either tend to
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the set V or remain inside it. De�nitions 2, 3, and 4
clarify these notions.

De�nition 2. System (2) is locally practically stable
with respect to an invariant set of attraction V in
the domain D under the switching function �(e(k)) if
there exist sets V and D satisfying the conditions of
De�nition 1 and V = D.

De�nition 3. System (2) is practically stable in the
large with respect to an invariant set of attraction V
in the domain D under the switching function �(e(k))
if there exist sets V and D satisfying conditions of
De�nition 1 and V � D.

De�nition 4. System (2) is practically stable in the
whole or is globally practically stable if it is practically
stable in the large and D = Rn.

De�nition 5. In De�nitions 2{4, the set D � V is
referred to as the domain of attraction of System (2)
under the switching rule �(e(k)).

3. Stability analysis and controller synthesis

This section presents the main results obtained in this
study. Lemma 1 determines under what conditions
System (2) is practically stable in the large in the sense
of De�nition 3 using Lyapunov functions.

Lemma 1. System (2) is practically stable in the large
in a given domain D � Rn containing the origin in the
sense of De�nition 3 if there exist a bounded set V � D
and a scalar function v(e(k)) : Rn ! R�0 such that:

(a) 0n�1 2 V;
(b) If e(k) 2 V then e(k+1) = A�(e(k))e(k)+ l�(e(k)) 2V;
(c) If e(k) 2 D � V then v(e(k + 1)) � v(e(k)) =

�v(e(k)) � ��(jje(k)jj) < 0 where �(jje(k)jj) is a
nondecreasing scalar function such that �(0) = 0
and �(jje(k)jj) > 0, 8e(k) 2 D � V;

(d) v(e(k)) � w(jje(k)jj) > 0 where e(k) 2 D � V
and w(jje(k)jj) is a continuous and nondecreasing
scalar function such that w(0) = 0.

Proof. Conditions (a) and (b) are the same as
Conditions (a) and (b) of De�nition 1, thus ful�lling
the invariant property of the bounded set V. To prove
the attractiveness property of set V according to
Condition (c) of De�nition 1 it is necessary to show
that to begin any initial state e(0) 2 D � V, there
exists a �nite time T = T (e(0)) > 0 such that for
k � T the state e(k) eventually enters the set V, i.e.,
9T > 0; hence, e(k) 2 V for k � T . This can be
justi�ed within two stages in the following. According

to Conditions (c) and (d), since the sequence v(e(k))
is decreasing and lower bounded, then based on
Weierstrass theorem limk!1 v(e(k)) = h � 0.
Therefore, the following two cases are introduced.

Case 1. h > 0: Our proof in this case is made by
contradiction. Assume that the state trajectory e(k)
never intersects with V. Now h > 0, implies that there
exists 
 > 0 such that jje(k)jj > 
; 8k 2 Z�0. Then,
since �(jje(k)jj) is a nondecreasing function, we have
v(e(k+ 1))� v(e(k)) � ��(
) < 0. In view of this, one
can write:

v(e(k)) = v(e(0)) +
k�1X
n=0

(v(e(n+ 1))� v(e(n)))

� v(e(0))� k�(
): (4)

The right side of Eq. (4) will be eventually
negative when k takes large values. This leads to
contradiction against Condition (d) where it is assumed
that v(e(k)) is positive de�nite on D � V.

Case 2. h = 0: On the other hand, if h = 0, according
to condition (d), one can write:

0 = lim
k!1 v(e(k)) � lim

k!1w(jje(k)jj) � 0: (5)

Eq. (5) implies that limk!1 w(jje(k)jj) = 0. Since
w(jje(k)jj) is a continuous, nondecreasing, and pos-
itive de�nite function, it can be concluded that
limk!1 jje(k)jj = 0, indicating that 8� > 0, 9T (�) > 0
such that in case k > T (�), jje(k)jj < �. Therefore,
there exists a �nite time T = T (�) > 0 such that in the
case of k � T , the state e(k) eventually enters the set V.
As a result, V is an invariant set of attraction according
to De�nition 1. In addition, according to De�nition
3, System (2) is practically stable in the large in the
domain D under switching function �(e(k)). Hence the
proof is completed.�

Lemma 1 does not determine how one can choose
the bounded set V. In this respect, one approach
to selecting V among all possibilities is to choose the
bounded level sets of the function v(e(k)) as follows:

V = fe(k) 2 Rnjjv(e(k)) � rg; (6)

with r > 0. In this regard, an additional condition is
required on the function v(e(k)) that can guarantee the
boundedness of its level set V de�ned in Eq. (6). This
condition is stated as a growth condition presented in
Eq. (7):

limjje(k)jj!1 v(e(k))!1: (7)

The function satisfying Relation (7) is radially un-
bounded. According to Condition (7), 8r > 0, 9R > 0
such that:
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jje(k)jj > R) v(e(k)) > r: (8)

A contrapositive statement of Relation (8) is:

v(e(k)) � r ) jje(k)jj � R; (9)

indicating that V � BR where BR denotes the ball
de�ned as BR = fe(k) 2 Rnjjje(k)jj � Rg. As a result,
the set V de�ned in Eq. (6) is bounded.

Remark 1. De�nitions 1{5, Lemma 1 and its proof
can be applied to the nonlinear switched systems with-
out a common equilibrium point where the functions
fi(e(k)), i 2 K in e(k+1) = fi(e(k)) do not necessarily
need to be in the a�ne form, as in System(2). In this
context, just replace condition (b) in De�nition 1 and
Lemma 1 using the following order: (b) if e(k) 2 V
then e(k + 1) = f�(e(k))(e(k)) 2 V.

Remark 2. In Lemma 1, if D = Rn, according to
De�nition 4, System (2) is globally practically stable.

Note that the switched Lyapunov function
v(e(k)) = e(k)TP�(e(k))e(k) with PTi = Pi, i 2 K is
a radially-unbounded positive de�nite function since
v(e(k)) � mini2K �min(Pi)jje(k)jj2. Moreover, 0n�1 2V where the set V is de�ned as shown in Eq. (3). It can
be veri�ed that the level set of the switched Lyapunov
function v(e(k)) = e(k)TP�(e(k))e(k) is the union of the
ellipsoids Ei = fe(k) 2 Rnje(k)TPie(k) � rg. By
dividing both sides of e(k)TPie(k) � r into r and
then substituting Pi  Pi

r , the ellipsoids Ei can be
represented as Ei = fe(k) 2 Rnje(k)TPie(k) � 1g with
the same notation given in Eq. (3). In the context of
practical stability of switched systems, since this study
aims to obtain the invariant set of attraction with small
size as much as possible [18,19,33,42], the intersection
of the ellipsoids Ei, instead of their union, is selected,
as shown in Eq. (3). Note that since:

N\
i=1

Ei �
N[
i=1

Ei; (10)

the boundedness of the right side of Relation (10) guar-
antees that of its left side. Furthermore, it is obvious
that 0n�1 2 V where V is given in Eq. (3). Therefore,
the set V de�ned in Eq. (3) is bounded and the switched
Lyapunov function v(e(k)) = e(k)TP�(e(k))e(k) satis�es
Conditions (a) and (d) of Lemma 1. In the next
subsection, a switching rule and some conditions on
matrices Pi = PTi � 0 are proposed such that
Conditions (b) and (c) of Lemma 1 are ful�lled for
System (2) as well.

3.1. State-dependent switching rule synthesis
As discussed earlier, this study aims to design a switch-
ing rule �(e(k)) for System (2) that drives the state
trajectories towards the set V de�ned in Eq. (3) using

a switched Lyapunov function v(e(k)) = V�(e(k)) =
e(k)TPie(k), Pi = PTi � 0. A min-type state feedback
switching function is employed in this study shown in
the following:

Algorithm 1. Switching Law:

1. Set k = 0.
2. If the trajectory is outside the set V

given in (3), i.e., e(k) =2 V, switch to the
subsystem �(e(k)) given by the following
switching function:

(i�; j�) = arg min
i;j2K[(Aje(k) + lj)T

Pi(Aje(k) + lj)� e(k)TPje(k)]

�(e(k)) = j� (11)

3. If the trajectory is inside the set V
defined in Eq. (3), i.e., e(k) 2 V, first,
construct the set I = fj 2 K :
(Aje(k) + lj)TPi(Aje(k) + lj) � 1; 8i 2 Kg.
Now:

3.1. If jIj = 1, switch to the subsystem �
(e(k)) = j, such that j 2 I.

3.2. If jIj > 1, compute N switching indi-
ces:

�i = arg min
j2I (Aje(k) + lj)TPi(Aje(k) + lj);

8i 2 K:
If �1 = �2 = : : : = �N, switch
to subsystem �(e(k)) = �j, j 2 K.
Otherwise, choose �(e(k)) = argminj2I tr
(P�1
j ).

4. Put k = k + 1 and go to item 2.

Set I in the above switching algorithm contains
all subsystem indices such that the state trajectory
e(k + 1) will remain in the invariant set of attraction
V by switching to them. In item (3.2), if there
is a degree of freedom for the controller to choose
suitable subsystems and keep the trajectory inside the
set V, the controller selects either the subsystem that
governs the state trajectory as close as possible to
the null equilibrium point or that which takes the
state trajectory closer to the ellipsoid Ei = fe(k) 2
Rnje(k)TPie(k) � 1g with minimum size in terms
of the sum of the squares of the ellipsoid semiaxes
[42]. Lemmas 2 and 3 are frequently used in the next
derivations.

Lemma 2. For a set of functions fi : D ! R, D �
Rn, i 2 K as f1(x),: : :,fl(x),: : :,fN (x), the following
statements are equivalent.
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i) 8x 2 D, 9l 2 K; such that fl(x) < 0.
ii) 8x 2 D, 9(�1 � 0; : : : ; �l � 0; : : : ; �N � 0); such

that
P
i2K �ifi(x) < 0, and

P
i2K �i > 0.

Proof. i) ) ii) Assume that 8x 2 D � Rn, at
least one of the functions, say fl(x), l 2 K satis�es
the inequality fl(x) < 0. Now, by choosing the set
of parameters �l > 0; �i = 0; i 6= l, i 2 K, one can
conclude

P
i2K �ifi(x) = �lfl(x) < 0 and

P
i2K �i =

�l > 0.

ii) ) i) This can be shown by contradiction: Assume
that 9x 2 D � Rn such that all fl(x), l 2 K
ful�ll fl(x) � 0. Through multiplication of these
inequalities to �l � 0, but not all zero (since

P
i2K �i >

0), and summation of all the terms one can reachP
l2K �lfl(x) � 0. However, this contradicts the fact

that 8x 2 D � Rn there exists a set of nonnegative
parameters �l � 0, l 2 K such that

P
i2K �ifi(x) < 0.�

Lemma 3 is a nonstrict form of Lemma 2.

Lemma 3. For a set of functions fi : D ! R; D �
Rn i 2 K as f1(x),: : :,fl(x),: : :,fN (x), the following
statements are equivalent:

i) 8x 2 D, 9l 2 K; such that fl(x) � 0.
ii) 8x 2 D, 9(�1 � 0; : : : ; �l � 0; : : : ; �N � 0); such

that
P
i2K �ifi(x) � 0, and

P
i2K �i > 0.

Proof. The proof is similar to that of Lemma 2 and is
omitted for the sake of brevity.

Theorem 1 provides su�cient conditions for which
the switched a�ne system (2) under switching function
in Algorithm 1 is globally practically stable according
to De�nition 1.

Theorem 1. If there exist matrices PTi = Pi � 0
and nonnegative numbers �hi � 0, �hj � 0, �j � 0,
�1h � 0, �2h � 0, i; j; h 2 K, such that

P
i2K �hi > 0,P

j2K �hj > 0,
P
j2K �j > 0 satisfying the system of

inequalities:�
M1i �Ph2K �1hPh �

M2i M3i +
P
h2K �1h

�
� 0;

8i 2 K; (12)�
�2hPh + ~M1h �

~M2h ~M3h � �2h
�
� 0; 8h 2 K; (13)

where:

M1i =
X
j2K

�jATj PiAj ; (14)

M2i =
X
j2K

�j lTj PiAj ; (15)

M3i =
X
j2K

�j(lTj Pilj � 1); (16)

~M1h =
X
i2K

X
j2K

�hi�hj(ATj PiAj � Pj); (17)

~M2h =
X
i2K

X
j2K

�hi�hj lTj PiAj ; (18)

~M3h =
X
i2K

X
j2K

�hi�hj lTj Pilj ; (19)

then, the switching strategy in Algorithm 1 ensures that
System (2) is globally practically stable with respect
to De�nition 4, and that the set V in Eq. (3) is an
invariant set of attraction in the domain D = Rn with
respect to De�nition 1.

Proof. As shown earlier, while matrix Inequalities (12)
indicate the invariant property (Conditions (a) and
(b) of De�nition 1), matrix Inequalities (13) show the
attractive property (conditions (a) and (c) of De�nition
1). Pre-multiplying Inequality (12) by [e(k)T 1] and
post-multiplying it by [e(k)T 1]T , one can reach:�

e(k)
1

�T � M1i �Ph2K �1hPh �
M2i M3i +

P
h2K �1h

�
�
e(k)

1

�
� 0; 8i 2 K: (20)

Relation (20) can be rewritten as Relation (21).

��11

�
e(k)

1

�T � P1 �
01�n �1

� �
e(k)

1

�
: : :

��1h
�
e(k)

1

�T � Ph �
01�n �1

� �
e(k)

1

�
: : :

��1N
�
e(k)

1

�T � PN �
01�n �1

� �
e(k)

1

�
+
�
e(k)

1

�T � M1i �
M2i M3i

� �
e(k)

1

�
� 0;

8i 2 K: (21)

Using S-procedure [43,44], Relation (21) implies Rela-
tion (22):�

e(k)
1

�T � P1 �
01�n �1

� �
e(k)

1

�
� 0^; : : : ;
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�
e(k)

1

�T � Ph �
01�n �1

� �
e(k)

1

�
� 0^; : : : ;

^
�
e(k)

1

�T � PN �
01�n �1

� �
e(k)

1

�
� 0)�

e(k)
1

�T � M1i �
M2i M3i

� �
e(k)

1

�
� 0;

8i 2 K: (22)

By substituting M1i, M2i, and M3i from Eqs. (14){(16)
into Relation (22), one can write:

e(k)TP1e(k) � 1^; : : : ; e(k)TPhe(k) � 1^; : : : ;
^e(k)TPNe(k) � 1)X

j2K
�j(e(k)TATj PiAje(k)

+lTj PiAje(k) + e(k)TATj Pj lj + lTj Pilj � 1) � 0;

8i 2 K: (23)

Since �j � 0; j 2 K and
P
j2K �j > 0, according to

Lemma 3, Relation (23) is equivalent to:

e(k)TP1e(k) � 1^; : : : ; e(k)TPhe(k) � 1^; : : : ;
^e(k)TPNe(k) � 1) 9j 2 K such that e(k)T

ATj PiAje(k) + lTj PiAje(k) + e(k)TATj Pilj

+lTj Pilj � 1 � 0; 8i 2 K: (24)

After doing some algebra on the right side of Rela-
tion (24), one can reach:

e(k)TP1e(k) � 1^; : : : ; e(k)TPhe(k) � 1^; : : : ;
^e(k)TPNe(k) � 1) 9j 2 K; such that

(Aje(k) + lj)TPi(Aje(k) + lj) � 1; 8i 2 K: (25)

Based on Relation (25) and Item (3) of the switching
rule in Algorithm 1, one can conclude that jIj 6= 0. As
a result, Relation (25) can be rewritten as follows:

e(k)TP1e(k) � 1^; : : : ; e(k)TPhe(k) � 1^; : : : ;
^e(k)TPNe(k)�1) 9�(e(k))2K such that

(A�(e(k))e(k) + l�(e(k)))TPi(A�(e(k))e(k)

+l�(e(k))) � 1; 8i2K: (26)

Now, through the de�nition of set V in Eq. (3), Relation
(26) can be rewritten as:

e(k) 2 V =
N\
i=1

Ei ) e(k + 1) 2 V =
N\
i=1

Ei: (27)

Relation (27) implies that the set V in Eq. (3) is an
invariant set for the switched a�ne system (2) under
the switching law in Algorithm 1. In the sequel,
an attempt is made to prove the attractiveness of
the set V using matrix Inequalities (13). By Pre-
multiplying matrix Inequalities (13) by [e(k)T 1] and
post-multiplying them by [e(k)T 1]T , one can obtain:�

e(k)
1

�T � �2hPh + ~M1h �
~M2h ~M3h � �2h

�
�
e(k)

1

�
< 0; 8h 2 K: (28)

Relation (28) can be rewritten as Relation (29):

��2h
�
e(k)

1

�T � �Ph �
01�n 1

� �
e(k)

1

�
+
�
e(k)

1

�T
� ~M1h �

~M2h ~M3h

� �
e(k)

1

�
< 0; 8h 2 K: (29)

Upon using S-procedure, from Relation (29), one
can conclude in Relation (30) that 8e(k) 2 Rn:�

e(k)
1

�T � �Ph �
01�n 1

� �
e(k)

1

�
< 0)�

e(k)
1

�T � ~M1h �
~M2h ~M3h

� �
e(k)

1

�
<0;

8h 2 K: (30)

By substituting ~M1h, ~M2h, and ~M3h from Eqs. (17){
(19) into Relation (30), and after doing some algebra,
one can reach:

e(k)TPhe(k) > 1)X
i2K

�hi
�X
j2K

�hj [(Aje(k) + lj)T

Pi(Aje(k) + lj)� e(k)TPje(k)]
�
<0; 8h 2 K:

(31)

Since �hi � 0, i; h 2 K, and
P
i2K �hi > 0 according to

Lemma 2 and Relation (31) one can conclude that:

e(k)TPhe(k)>1)9i 2 K; such that
X
j2K

�hj

[(Aje(k) + lj)TPi(Aje(k) + lj)� e(k)TPje(k)]

< 0; 8h 2 K: (32)

Again, according to Lemma 2, since �hj � 0; j; h 2 K,
and

P
j2K �hj > 0, Relation (32) implies that:
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e(k)TPhe(k)>1)9i; j 2 K; such that (Aje(k)+lj)T

Pi(Aje(k) + lj)� e(k)TPje(k) < 0; 8h 2 K:
(33)

Now, according to the de�nition of the set V in Eq. (3),
we have:

e(k) =2 V ) 9h 2 K such that e(k)TPhe(k) > 1:
(34)

From Relations (33) and (34), one can infer:

e(k) =2 V ) 9i; j 2 K; such that (Aje(k)+lj)T

Pi(Aje(k)+lj)� e(k)TPje(k)<0: (35)

Since e(k) =2 V, according to Relation (5) and item (2)
in the switching Algorithm 1, one can conclude that
there exists �(e(k)); i; j 2 K satisfying the following
expression:

(A�(e(k))e(k) + l�(e(k)))TPi(A�(e(k))e+ l�(e(k)))

�e(k)TP�(e(k))e(k) � (Aje(k) + lj)T

Pi(Aje(k) + lj)� e(k)TPje(k): (36)

Based on Relations (35) and (36), one can conclude
that there exists �(e(k)); i 2 K such that:

e(k) =2 V ) 9i; j; �(e(k)) 2 K; such that

(A�(e(k))e(k) + l�(e(k)))TPi(A�(e(k))e(k)

+l�(e(k)))� e(k)TP�(e(k))e(k) � (Aje(k) + lj)T

Pi(Aje(k) + lj)� e(k)TPje(k) < 0; (37)

or equivalently:

e(k) =2 V ) 9i; j 2 K; such that v(e(k+1))�v(e(k))

= �v(e(k)) � (Aje(k) + lj)T Pi(Aje(k) + lj)

�e(k)TPje(k) < 0: (38)

Since v(e(k)) � mini2K �min(Pi)jje(k)jj2 > 0 when
e(k) 6= 0n�1, according to item (d) of Lemma
1, the continuous, nondecreasing, and positive def-
inite scalar function w(jje(k)jj) can be taken as
w(jje(k)jj) = mini2K �min(Pi)jje(k)jj2. Moreover, ac-
cording to item (c) of Lemma 1, we still need to �nd a
nondecreasing and positive de�nite function �(jje(k)jj)
such that �v(e(k)) � ��(jje(k)jj) < 0 when e(k) 2
D � V. In this regard, we de�ne:

�i;j(e(k)) = e(k)TPje(k)� (Aje(k) + lj)T

Pi(Aje(k) + lj); (i; j) 2 S; (39)

S=f(i; j) 2 K�Kj�v(e(k))���i;j(e(k))<0g: (40)

According to Relation (38), jSj � 1 and �i;j(e(k)) > 0
when e(k) =2 V . Now, we can de�ne the function �(s)
as:

�(s) = inf
s � je(k)j
s � 0

e(k) =2 V

min
(i;j)2S �i;j(e(k)): (41)

The function �(jje(k)jj) is nondecreasing and positive
de�nite when e(k) =2 V. Moreover, according to
Eq. (41) and Relation (38), one can write the following:

�v(e(k)) � ��i;j(e(k)) � ��(jje(k)jj) < 0;

(i; j) 2 S: (42)

Relation (42) in conjunction with 0n�1 2 V
implies the attractive property of the set V according to
items (a), (c) and (d) of Lemma 1. Therefore, according
to Relations (27) and (42), all conditions of Lemma 1
are ful�lled. In the proof of Theorem 1, since no restric-
tion is imposed on the selection of e(k), i.e., e(k) 2 Rn,
D = Rn, according to Remark 2 the switched a�ne
system (2) is globally practically stable under switching
Algorithm 1 and the proof is �nally concluded.

Remark 3. The constraints in Relation (13) are highly
non-convex due to the product of variables f�hi; �hi; Pig
in Eqs. (17){(19). A more conservative, yet simpler,
way to solve the conditions can be obtained by pre�xing
the variables �hi. To this end, the matrix B whose
elements are the parameters �hi � 0, (h; i) 2 K � K
should be de�ned. Among all possibilities, one can
choose matrix B as a simple form of B = cIn, with
c > 0. Another alternative is B = c1n, with c > 0.
Through this approach, all the conditions of Theorem
1 can be regarded as a set of BMIs without introducing
the additional parameters �hi.

Theorem 2 presents another set of BMI conditions
for the global practical stability of System (2) under
switching Algorithm 1 which is more conservative
than those proposed in Theorem 1, However, the new
conditions in Theorem 2 belong intrinsically to the BMI
form and do not require any pre�xing stage of variables
as in the case of Theorem 1 to come in the BMI form.
Moreover, while the number of unknown variables in
the conditions of Theorem 1 is 2N2+3N+Nn(n+1)=2,
in the conditions of Theorem 2 this number is 2N2 +
2N +Nn(n+ 1)=2. Therefore, the number of unknown
parameters in the BMI conditions of Theorem 2 is less
than that in the proposed conditions in Theorem 1 by
a quantity of N .

Theorem 2. In case there are matrices PTi = Pi � 0
and nonnegative numbers �hj � 0, �j � 0, �1h � 0,
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�2hi � 0, i; j; h 2 K, such that
P
j2K �hj > 0,P

j2K �j > 0, satisfying the system of inequalities:�
M1i �Ph2K �1hPh �

M2i M3i +
P
h2K �1h

�
� 0;

8i 2 K; (43)�
�2hiPh + ~M1hi �

~M2hi ~M3hi � �2hi
�
� 0; 8i; h 2 K;

(44)

where:

M1i =
X
j2K

�jATj PiAj ; (45)

M2i =
X
j2K

�j lTj PiAj ; (46)

M3i =
X
j2K

�j(lTj Pilj � 1); (47)

~M1hi =
X
j2K

�hj(ATj PiAj � Pj); (48)

~M2hi =
X
j2K

�hj lTj PiAj ; (49)

~M3hi =
X
j2K

�hj lTj Pilj ; (50)

then the switching strategy in Algorithm 1 ensures that
System (2) will be globally practically stable based on
De�nition 4 and the set V in Eq. (3) is an invariant
set of attraction in the domain D = Rn based on
De�nition 1.

Proof. Since the conditions in Relation (43) are the
same as Conditions (12) in Theorem 1, the proof that
the set V in Eq. (3) is invariant under the switching
Algorithm 1 for System (2) is similar to the �rst part
of the proof of Theorem 1 from Eqs. (20){(27). In the
sequel, the attractive property of the set V is proved by
conditions in Relation (44). By pre-multiplying matrix
Inequality (44) by [e(k)T 1] and post-multiplying it by
[e(k)T 1]T , one can obtain:�

e(k)
1

�T � �2hiPh + ~M1hi �
~M2hi ~M3hi � �2hi

�
�
e(k)

1

�
< 0; 8i; h 2 K: (51)

Relation (51) can be rewritten as:

��2hi
�
e(k)

1

�T � �Ph �
01�n 1

� �
e(k)

1

�
+
�
e(k)

1

�T
� ~M1hi �

~M2hi ~M3hi

� �
e(k)

1

�
< 0; 8i; h 2 K:

(52)

Using S-procedure, from Relation (52), one can obtain
Relation (53), hence 8e(k) 2 Rn.�

e(k)
1

�T � �Ph �
01�n 1

� �
e(k)

1

�
< 0)

�
e(k)

1

�T
� ~M1hi �

~M2hi ~M3hi

� �
e(k)

1

�T
< 0;

8i; h 2 K: (53)

By substituting ~M1hi, ~M2hi, and ~M3hi from Eqs. (48){
(50) into Relation (53) and after doing some algebra,
we obtain:

e(k)TPhe(k) > 1)X
j2K

�hj [(Aje(k) + lj)T

Pi(Aje(k)+lj)�e(k)TPje(k)]<0; 8i; h 2 K:
(54)

Since �hj � 0; j; h 2 K, and
P
j2K �hj > 0, according

to Lemma 2, Relation (54) implies Relation (55).

e(k)TPhe(k)>1) 9j 2 K; such that (Aje(k)+lj)T

Pi(Aje(k) + lj)� e(k)TPje(k) < 0;

8i; h 2 K: (55)

According to the de�nition of the set V in Eq. (3), we
have:

e(k) =2 V ) 9h 2 K; such that (k)TPhe(k) > 1: (56)

Now, through Relations (55) and (56), one can reach:

e(k) =2 V ) 9j 2 K; such that (Aje(k) + lj)T

Pi(Aje(k) + lj)� e(k)TPje(k) < 0; 8i 2 K:
(57)

Since e(k) =2 V, according to Relation (57) and Item
(2) in the switching Algorithm 1, one can conclude that
there is a �(e(k)) satisfying the following expression:

(A�(e(k))e(k) + l�(e(k)))TPi(A�(e(k))e+ l�(e(k)))

�e(k)TP�(e(k))e(k) � (Aje(k) + lj)T

Pi(Aje(k) + lj)� e(k)TPje(k); 8i 2 K: (58)

Based on Relations (57) and (58), one can conclude:
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e(k) =2 V)9j 2 K; such that (A�(e(k))e(k)+l�(e(k)))T

Pi(A�(e(k))e(k) + l�(e(k)))� e(k)TP�(e(k))e(k)

� (Aje(k) + lj)TPi(Aje(k) + lj)� e(k)TPje(k)

< 0; 8i 2 K; (59)

or equivalently:

e(k) =2 V ) 9j 2 K; such that v(e(k + 1))v(e(k))

= �v(e(k)) � (Aje(k) + lj)TPi(Aje(k) + lj)

�e(k)TPje(k) < 0; 8i 2 K: (60)

Similar to our argument in Theorem 1, it can
be shown that there exist functions w(jje(k)jj) and
�(jje(k)jj) that satisfy the respective properties in
Lemma 1. This discussion is omitted here for the sake
of brevity. Therefore, the attractiveness property of the
set V is inferred according to items (a), (c), and (d) of
Lemma 1. Therefore, all conditions for Lemma 1 are
ful�lled. Similar to Theorem 1, since no restriction is
imposed on the selection of e(k), namely e(k) 2 Rn, we
have D = Rn, and according to Remark 2, the switched
a�ne system (2) is globally practically stable under
switching Algorithm 1, thus completing the proof.

Remark 4. Theorem 1 is less conservative than
Theorem 2. As observed in Relation (37) in Theorem 1,
at any time, the decreasing condition of Lyapunov
function, i.e., �v(e(k)) < 0, is imposed at least on
one of the matrices Pi, i 2 K, while according to
Relation (59) in Theorem 2, it is applied to all matrices
Pi, i 2 K.

4. Minimization of the invariant set of
attraction

As already discussed in Section 3, the author intends
to select the invariant set of attraction V de�ned in
Eq. (3) to minimize its size based on some standard
sense. As observed in Eq. (3), the formation of this
set results from the intersection of N ellipsoids Ei =
fe 2 Rnjje(k)TPie(k) � 1g. Therefore, one approach
to minimizing the size of the set V is to minimize the
size of all ellipsoids Ei, i 2 K. Ei, and to do so, one can
minimize the trace of the matrix P�1

i that de�nes the
sum of the squares of the ellipsoid Ei semiaxes [42]. To
this end, this study employs the following optimization
problem:

inf
Pi;�j ;�jh;�1h;�2h

i=NX
i=1

tr(P�1
i );

subject to [(12)� (13)] or [(43)� (44)]

�j � 0; �jh � 0; �1ih � 0; �2ih � 0: (61)

Since both of the tool YALMIP/MATLAB [45] and the
BMI solver PENBMI [46] are not able to handle the
nonlinear terms tr(P�1

i ) in the objective function of
(61), an upper bound P�1

i � tiIn with ti > 0, Pi � 0
i 2 K is considered and rewritten as In� tiPi � 0 with
ti > 0, Pi � 0, i 2 K. Accordingly, Relation (61) is
replaced by the following optimization problem:

inf
Pi;�j ;�jh;�1h;�2h;ti

i=NX
i=1

ti;

subject to [(12)� (13)] or [(43)� (44)]

�j � 0; �jh � 0; �1ih � 0; �2ih � 0

In � tiPi � 0; ti > 0; Pi = PTi � 0: (62)

In this study, the optimization problem in Relation (62)
is solved using the BMI solver PENBMI [46] interfaced
by YALMIP [45].

In the numerical simulations described in the
next section, it was observed that in some cases,
the optimization problem in Relation (62) was still
too nonlinear and non-convex to obtain suitable and
acceptable results from the PENBMI package. In
this regard, additional constraints were added to the
optimization problem in Relation (62) to put a limit on
the search space and obtain desirable results from the
solver, even at the expense of falling into conservatism.
These additional constraints are suggested as follows:X
j2K

�hj = qh; 8h 2 K; (63)

X
i2K

�j = q; (64)

with qh; q > 0. By taking the limited and reasonable
values of the parameters qh and q, one can control and
limit the regions of non-negative variables �hj and �j
in the conditions of Theorems 1 and 2. Of note, even
after adding new constraints in Eqs. (63) and (64) to
the conditions of Theorems 1 and 2, these theorems
are still valid. The proof of this claim is derived from
Lemmas 2 and 3 where the constraint

P
i2K �j > 0

is implied by more restrictive constraints in Eqs. (63)
and (64).

5. Application

A DC-DC buck converter is shown in Figure 1. The
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Figure 1. DC-DC buck converter.

state vector is de�ned as x(t) = [iL(t) vo(t)]T , through
which the continuous dynamics in Continuous Con-
duction Mode (CCM) associated with each mode are
obtained as _x(t) = Acix(t) + bci, i 2 f1; 2g where:

Ac1 =� � rLL � 1
L

1
C

R
R+rC

�
1�CrC rLL

� � 1
C

1
R+rC

�
1+CrC RL

� � ;
bc1 =

� Vs
L
Vs R

R+rC
rC
L

�
;

Ac2 = Ac1; bc2 =
�

0
0

�
:

(65)

In Eq. (65), Vs = 50 V is the input DC voltage, R =
50 
 the load resistance, L = 2 mH the inductor induc-
tance, rL = 0:5 
 the inductor resistance, C = 100 �F
the output capacitor capacitance, and rc = 0:1 
 the
equivalent series resistance of the capacitor [47]. In
order to avoid ill-conditioned matrix inequalities and
make the problem more amenable for the numerical
purposes in the numerical simulations, the per-unit
parameters [34,48] are employed. In this regard, the
base values for the chosen per-unit system are vbase =
50 V, ibase = 2:5 A and Tbase = 10 �s. The sampling
time is set to Ts = 10 �s and consequently, the
maximum value of the switching frequency is limited
to 1

2Ts = 50 kHz. The state-space matrices of the
corresponding discrete-time system can be obtained as
follows:

Ai = eAciTs ; bi =
Z Ts

0
eAcitdtbci; (66)

where i 2 f1; 2g. Although the equilibrium point
xe can be arbitrarily chosen at the expense of ob-
taining the set V with a possibly greater size, in
this study, the desired target was selected as the
equilibrium point of the averaged system as xe =
(In � A�ref )�1b�ref = [0:2970; 0:7426]T corresponding
to �ref = 0:75. Through Conditions (12) and (13) of
Theorem 1, the solution of the optimization problem
in Relation (62) corresponding to B = 15 12 can be
obtained, considering the new constraint in Eq. (64),
as �1 + �2 = 6 yields t1 = 0:0920, t2 = 0:2066, �11 =
1:0184E � 4, �12 = 0:0381E � 4, �21 = 1:4846E + 7,
�22 = 2:0762E + 7, �1 = 4:4980, �2 = 1:4993,

�11 = 5:9862, �12 = �0:0826, �21 = �0:9141E � 4,
�22 = 1:5199E + 7 with the matrices P1 and P2 as:

P1 =
�

10:8685 �2:9654
�2:9654 216:8589

�
;

P2 =
�

4:9096 �0:3452
�0:3452 6:3089

�
: (67)

As can be observed, some of the variables have small
deviations from the theoretical constraints; however,
these results are still acceptable in practice, as con-
�rmed by the numerical experiments. The invariant
set of attraction as well as the state trajectories
x(k) corresponding to di�erent initial conditions are
presented in Figure 2. Though rare in practice, to show
the wide range of the attractive region and validity of
the obtained numerical solutions, the initial conditions
are selected quite far from the equilibrium point xe.
Figure 3 illustrates an enlarged view of Figure 2 around

Figure 2. State trajectories corresponding to conditions
of Theorem 1 and B = 15 12.

Figure 3. An enlarged view of Figure 2 around the
attractive ellipsoids.
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Figure 4. Time trajectories corresponding to the initial
condition iL(0) = vo(0) = �25p:u:: (a) Inductor current,
(b) output voltage, and (c) switching function.

the attractive ellipsoids. Figure 4 shows the time
trajectories of the inductor current, output voltage,
and switching function corresponding to the initial
condition iL(0) = vo(0) = �25 p:u:.

The optimization problem in Relation (62) cor-
responding to the proposed stability conditions in
Theorem 2 and the additional constraints in Eqs. (63)
and (64) as �1+�2 = 1, �11+�12 = 10, and �21+�22 =
10 yields t1 = t2 = 0:3755, �11 = �21 = 7:5000, �12 =
�22 = 2:4999, �1 = 0:7500, �2 = 0:2499, �11 = 0:2410,
�12 = 0:7539, �211 = �212 = �221 = �222 = 0:0498 with
matrices P1 and P2 as:

P1 = P2 =
�

2:6627 0:0013
0:0013 53:4956

�
: (68)

Compared to the results obtained by the conditions
of Theorem 1, the stability conditions of Theorem 2
yield more conservative results regarding the smallest
size of the ultimate invariant set of attraction. This
can be realized by the comparison of the values t1 and
t2 obtained corresponding to the conditions provided
by these two theorems. Figures 5 and 6 illustrate the
state trajectories of the converter under the stability
conditions of Theorem 2.

Figure 7 illustrates the state trajectories starting
from the null initial conditions and invariant set of
attractions corresponding to the conditions of the
Theorems 1 and 2. Although the size of the ultimate
invariant set of attraction estimated by Theorem 1 was
less conservative, the results obtained from the stability
conditions of Theorem 2 were more desirable in terms
of performance.

Figure 5. State trajectories corresponding to conditions
of Theorem 2.

Figure 6. An enlarged view of Figure 5 around the
attractive ellipsoids.

Figure 7. State trajectories corresponding to conditions
of Theorems 1 and 2.

6. Conclusion

In this study, a switched Lyapunov function approach
was proposed for the global practical stability analy-
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sis and controller synthesis of discrete-time switched
a�ne systems. The proposed conditions were BMI-
based conditions that could ensure both invariance and
attractive properties of the ultimate convergence set
simultaneously. Two theorems were suggested with
two di�erent sets of su�cient conditions. In the �rst
theorem, the proposed conditions were not in the
Bilinear Matrix Inequality (BMI) form; thus, pre�xing
of variables was recommended to convert them to the
standard BMI form. The stability conditions in the
second theorem were intrinsically in the BMI form,
yet more conservative. The proposed design and
stabilization method were successfully investigated on
a DC-DC buck converter.
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