REFERENCES:
[1] Dzieliński, A., Sarwas, G. and Sierociuk, D. “Comparison and validation of integer and fractional order ultracapacitor models”, Advances in Difference Equations, 2011(1), pp. 11 (2011).
[2] Radwan, A.G., Soliman, A.M. and Elwakil, A.S. “Design equations for fractional‐order sinusoidal oscillators: Four practical circuit examples”, International Journal of Circuit Theory and Applications, 36(4), pp. 473-492 (2008).
[3] Gabano, J.D., Poinot, T. and Kanoun, H. “Identification of a thermal system using continuous linear parameter-varying fractional modelling”, IET Control Theory and Applications, 5(7), pp. 889-899 (2011).
[4] Xu, J. and Li, J. “Stochastic dynamic response and reliability assessment of controlled structures with fractional derivative model of viscoelastic dampers”, Mechanical Systems and Signal Processing, 72, pp. 865-896 (2016).
[5] Kumar, S. “A new fractional analytical approach for treatment of a system of physical models using Laplace transform”, Scientia Iranica, 21(5), pp. 1693-1699 (2014).
[6] Ionescu, C.M. and De Keyser, R.. “Relations between fractional-order model parameters and lung pathology in chronic obstructive pulmonary disease”, IEEE Transactions on Biomedical Engineering, 56(4), pp. 978-987 (2009).
[7] Taghavian, H. and Tavazoei, M.S. “Analytic solution of a system of linear distributed order differential equations in the Reimann-Liouville sense”, Scientia Iranica, DOI: 10.24200/SCI.2018.20335, (2018).
[8] Podlubny, I. “Fractional-order systems and PI D controllers”, IEEE Transactions on Automatic Control,
44(1), pp. 208-214 (1999).
[9] Luo, Y. and Chen, Y. “Fractional order [proportional derivative] controller for a class of fractional order systems”, Automatica, 45(10), pp. 2446-2450 (2009).
[10] Padula, F. and Visioli, A. “Tuning rules for optimal PID and fractional-order PID controllers”, Journal of Process Control, 21(1), pp. 69-81 (2011).
[11] Fergani, N. and Charef, A. “Process step response based fractional PI D controller parameters tuning for
desired closed loop response”, International Journal of Systems Science, 47(3), pp. 521-532 (2016).
[12] Rahimian, M.A. and Tavazoei, M.S. “Improving integral square error performance with implementable fractional‐order PI controllers”, Optimal Control Applications and Methods, 35(3), pp. 303-323 (2014).
[13] Monje, C.A., Vinagre, B.M., Feliu, V., et al. “Tuning and auto-tuning of fractional order controllers for industry applications”, Control Engineering Practice, 16(7), pp. 798-812 (2008).
[14] Li, H., Luo, Y. and Chen, Y. “A fractional order proportional and derivative (FOPD) motion controller: tuning rule and experiments”, IEEE Transactions on Control Systems Technology, 18(2), pp. 516-520 (2010).
[15] Roy, P. and Roy, B.K. “Fractional order PI control applied to level control in coupled two tank MIMO system with experimental validation”, Control Engineering Practice, 48, pp. 119-135 (2016).
[16] Khubalkar, S., Chopade, A., Junghare, A., et al. “Design and realization of stand-alone digital fractional order PID controller for buck converter fed DC motor”, Circuits, Systems and Signal Processing, 35(6), pp. 2189-2211 (2016).
[17] Sayyaf, N. and Tavazoei, M.S. “Robust Fractional-Order Compensation in the Presence of Uncertainty in a Pole/Zero of the Plant”, IEEE Transactions on Control Systems Technology, 26(3), pp. 797- 812 (2018).
[18] Sayyaf, N. and Tavazoei, M.S. “Desirably Adjusting Gain Margin, Phase Margin and Corresponding Crossover Frequencies Based on Frequency Data”, IEEE Transactions on Industrial Informatics, 13(5), pp. 2311-2321 (2017).
[19] Badri, V. and Tavazoei, M.S. “Some Analytical Results on Tuning Fractional-Order [Proportional-Integral] Controllers for Fractional-Order Systems”, IEEE Transactions on Control Systems Technology, 24(3), pp. 1059-1066 (2016).
[20] Karaboga, D. and Akay, B. “Proportional-integral-derivative controller design by using artificial bee colony, harmony search and the bees algorithms”, Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 224(7), pp. 869-883 (2010).
[21] Kesarkar, A.A. and Selvaganesan, N. “Tuning of optimal fractional-order PID controller using an artificial bee colony algorithm”, Systems Science and Control Engineering, 3(1), pp. 99-105 (2015).
[22] Padula, F. and Visioli, A. “Optimal tuning rules for proportional-integral-derivative and fractional-order proportional-integral-derivative controllers for integral and unstable processes”, IET Control Theory and Applications, 6(6), pp. 776-786 (2012).
[23] Chang, L.Y. and Chen, H.C. “Tuning of fractional PID controllers using adaptive genetic algorithm for active magnetic bearing system”, WSEAS Transactions on Systems, 8(1), pp. 158-167 (2009).
[24] Cao, J.Y. and Cao, B.G. “Design of fractional order controllers based on particle swarm optimization”, 1ST IEEE Conference on Industrial Electronics and Applications, pp. 1-6 (2006).
[25] Ateş, A. and Yeroglu, C. “Optimal fractional order PID design via Tabu Search based algorithm”, ISA Transactions, 60, pp. 109-118 (2016).
[26] Das, S., Pan, I. and Das, S. “Multi-objective LQR with optimum weight selection to design FOPID controllers for delayed fractional order processes”, ISA Transactions, 58, pp. 35-49 (2015).
[27] Tavazoei, M.S. and Haeri, M. “Rational approximations in the simulation and implementation of fractional-order dynamics: A descriptor system approach”, Automatica, 46(1), pp. 94-100 (2010).
[28] Rahimian, M.A. and Tavazoei, M.S. “Optimal tuning for fractional-order controllers: an integer-order approximating filter approach”, ASME Journal of Dynamic Systems, Measurement and Control, 135(2), (2013).
[29] Kinney, T.B. “Tuning process controllers”, Chemical Engineering, 90(19), pp. 67-72 (1983).
[30] Podlubny, I., Petraš, I., Vinagre, B.M., et al. “Analogue realizations of fractional-order controllers”, Nonlinear Dynamics, 29(1), pp. 281-296 (2002). [31] Machado, J.A. “Delay approximation of fractional integrals”, Asian Journal of Control, 15(3), pp. 713-722 (2013).
[32] Ogata, K. “Modern Control Engineering”, Prentice Hall of India, New Delhi (1982).
[33] Sundaravadivu, K., Arun, B. and Saravanan, K. “Design of fractional order PID controller for liquid level control of spherical tank”, IEEE International Conference on Control System, Computing and Engineering (ICCSCE), pp. 291-295 (2011). [34] Walton, K. and Marshall, J.E. “Closed form solution for time delay systems' cost functionals”, International Journal of Control, 39(5), pp. 1063-1071 (1984).
[35] Kealy, T. and O'Dwyer, A. “Analytical ISE calculation and optimum control system design”, In Proceedings of the Irish Signals and Systems Conference, Limerick, Ireland, pp.418-423 (2003).
[36] Shmakov, S.L. “A universal method of solving quartic equations”, International Journal of Pure and Applied Mathematics, 71(2), pp. 251-259 (2011).
[37] Kreyszig, E. and Norminton, E.J. “Advanced engineering mathematics”, 4th Edn., Wiley, New York (1993).
[38] Walton, K., Ireland, B. and Marshall, J.E. “Evaluation of weighted quadratic functional for time-delay systems”, International Journal of Control, 44(6), pp. 1491-1498 (1986).
[39] Nocedal, J., Wright, S.J. “Numerical optimization”, Springer-Verlag, New York.
[40] Courant, R. “Differential and integral calculus”, 2th Edn., John Wiley and Sons.
[41] Zhuang, M. and Atherton, D.P. “Automatic tuning of optimum PID controllers”, In IEE Proceedings D (Control Theory and Applications), 140(3), pp. 216-224 (1993).
[42] Nash, J.C. “Compact numerical methods for computers: linear algebra and function minimization”, CRC press.
[43] Padula, F. and Visioli, A. “Advances in Robust Fractional Control”, Springer (2015).