Optimal hyperplastic coefficients of the micromechanical constituents of human brain stem were investigated. An evolutionary optimization algorithm was combined with a Finite Element (FE) model of a Representative Volume Element (RVE) to find the optimal material properties of axon and Extra Cellular Matrix (ECM). The tension and compression test results of a previous experiment were used for optimizing the material coefficients and the shear experiment was used for validation of the resulting constitutive model. Periodic Boundary Conditions (PBC) were applied to ensure the symmetry of displacements on the opposite faces of the RVE. The optimization algorithm searched for optimal shear moduli and fiber stiffness of axon and ECM by fitting the average stress in axonal direction. The resulting constitutive model was validated against the shear stress results of the same experiment. The results were in strong agreement with those of the shear test. In addition, we concluded that the instantaneous shear moduli and fiber stiffness of both axon and ECM rise at higher strain rates, and more importantly, the shear modulus ratio of axon to ECM decreases from the value of 10 at low strain rate of 0.5/s to the value of 5 at the strain rate of 30/s.
Wasserman, L., Shaw, T., Vu, M., Ko, C., Bollegala, D., and Bhalerao, S. An overview of traumatic brain injury and suicide", Brain Injury, 22(11), pp. 811{819 (2008). DOI: 10.1080/02699050802372166
Johnson, V.E., Stewart, W., Smith, D.H. Axonal pathology in traumatic brain injury", Experimental Neurology, Special Issue: Axonal Degeneration, 246, pp. 35{43 (2013). DOI:10.1016/j.expneurol. 2012.01.013
Arbogast, K. and Margulies, S. A _ber-reinforced composite model of the viscoelastic behavior of the brainstem in shear", J. Biomech., 32, pp. 865{870 (1999)
Arbogast, K.B. and Margulies, S.S. Material characterization of the brainstem from oscillatory shear tests", J Biomech, 31, pp. 801{807 (1998).
Prange, M.T. and Margulies, S.S. Regional, directional, and age-dependent properties of the brain undergoing large deformation", J Biomech Eng, 124, pp. 244{252 (2002).
Budday, S., Sommer, G., Holzapfel, G.A., Steinmann, P., and Kuhl, E. Viscoelastic parameter identi_cation of human brain tissue", Journal of the Mechanical Behavior of Biomedical Materials, 74, pp. 463{476, ISSN 1751-6161 (2017).
Miller, K. and Chinzei, K. Mechanical properties of brain tissue in tension", J. Biomech., 35, pp. 483{490 (2002). H. Hoursan et al./Scientia Iranica, Transactions B: Mechanical Engineering 27 (2020) 784{794 793 8. Gefen, A. and Margulies, S. Are in vivo and in situ brain tissues mechanically similar?", Journal of Biomechanics, 37, pp. 1339{52 (2004). 10.1016/j.jbiomech.2003.12.032 9. Hrapko, M., Dommelen, J.A.W., Peters, G.W.M., and Wismans, J.S.H. The mechanical behavior of brain tissue: large strain response and constitutive modeling", Biorheology, 43, pp. 623{636 (2006). 10. Xin, J., Feng, Z., Haojie, M., Ming, S., and King, H. A comprehensive experimental study on material properties of human brain tissue", Journal of Biomechanics, 46(16), pp. 2795{2801, ISSN 0021-9290 (2013). 11. Budday, S., Sommer, G., Birkl, C., Langkammer, C., Haybaeck, J., Kohnert, J., Bauer, M., Paulsen, F., Steinmann, P., Kuhl, E., and Holzapfel, G.A. Mechanical characterization of human brain tissue", Acta Biomater., 48, pp. 319{340 (2016). https://doi.org/10.1016/j.actbio.2016.10.036 12. Eslaminejad, A., Hosseini Farid, M., Ziejewski, M., Karami, G. Brain Tissue constitutive material models and the _nite element analysis of blast-induced traumatic brain injury", Scientia Iranica, 25(6), pp. 3141{ 3150 (2018). DOI: 10.24200/sci.2018.20888 13. Saboori, P. and Sadegh, A. Material modeling of the head's subarachnoid space", Scientia Iranica, 18(6), pp. 1492{1499, ISSN 1026-3098 (2011). 14. Hoursan, H., Ahmadian, M., Barari, A., and Naghibi, H. Modelling and analysis of the e_ect of angular velocity and acceleration on brain strain _eld in traumatic brain injury", ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE), 3 (2013). 10.1115/IMECE2013-63053 15. Sha_ee, A., Ahmadian, M., Hoursan, H., and Hoviattalab, M. E_ects of linear and rotational acceleration on human brain", Journal of Mechanical Engineering Modares, 15, pp. 248{260 (2015). 16. Hoursan, H., Ahmadian, M., Kazemiasfeh, R., and Barari, A., On the validity extent of linear viscoelastic models of human brain (2018). 10.25071/10315/35365 17. MacManus, D.B., Pierrat, B., Murphy, J.G., and Gilchrist, M.D. Region and species dependent mechanical properties of adolescent and young adult brain tissue", Scienti_c Reports, pp. 2045{2322 (2013). https://doi.org/10.1038/s41598-017-13727-z 18. Wright, R.M., Post, A., Hoshizaki, B., and Ramesh, K.T. A multiscale computational approach to estimating axonal damage under inertial loading of the head", J Neurotrauma, 30(2), pp. 102{18 (2013). DOI: 10.1089/neu.2012.2418. PubMed PMID: 22992118 19. Goriely, A., Geers, M.G.D., and Holzapfel, G.A. Mechanics of the brain: perspectives, challenges, and opportunities", Biomechanics and Modeling in Mechanobiology, 14, pp. 931{965 (2015). DOI: 10.1007/s10237-015-0662-4 20. Ning, X., Zhu, Q., Lanir, Y., and Margulies, S.S. A transversely isotropic viscoelastic constitutive equation for brainstem undergoing _nite deformation", ASME J Biomech Eng, 128(6), pp. 925{933 (2006). DOI:10.1115/1.2354208 21. Karami, G. and Shankar, S. A multiscale analysis of the white brain material with axons as bidirectional oriented _bers", SIMULIA Customer Conference, pp. 1{14 (2011). 22. Abolfathi, N., Naik, A., Sotudeh, M., Karami, G., and Ziejewski, M. A micromechanical procedure for characterization of the mechanical properties of brain white matter", Computer Methods in Biomechanics and Biomedical Engineering (In Press). DOI: 10.1080/10255840802430587) (2008). 23. Cloots, R.J.H., Dommelen van, J.A.W., Kleiven, S., and Geers, M.G.D. Multi-scale mechanics of traumatic brain injury: predicting axonal strains from head loads", Biomechanics and Modeling in Mechanobiology, 12(1), pp. 137{150 (2013). DOI: 10.1007/s10237- 012-0387-6 24. Javid, S., Rezaei, A., and Karami, G. A micromechanical procedure for viscoelastic characterization of the axons and ECM of the brainstem", Journal of the Mechanical Behavior of Biomedical Materials, 30, pp. 290{299, ISSN 1751-6161 (2014). 25. Carlsen, R.W. and Daphalapurkar, N.P. The importance of structural anisotropy in computational models of traumatic brain injury", Front Neurol, 6(28) (2015). DOI: 10.3389/fneur.2015.00028. E-Collection 2015. Review. PubMed PMID: 25745414; PubMed Central PMCID: PMC4333795 26. Latorre, M., De Rosa, E., and Mont_ans, F. Understanding the need of the compression branch to characterize hyperelastic materials", International Journal of Non-Linear Mechanics, 89 (2016). 10.1016/j.ijnonlinmec.2016.11.005 27. Holzapfel, G.A., Gasser, T.C., and Ogden, R.W. A new constitutive framework for arterial wall mechanics and a comparative study of material models", Journal of Elasticity, 61(1), pp. 1{48 (2000). https://doi.org/10.1023/A:1010835316564 28. Hill, R. Elastic properties of reinforced solids: some theoretical principles", Journal of the Mechanics and Physics of Solids, 11(5), pp. 357{372 (1963). DOI: 10.1016/0022-5096(63)90036-x 29. Meaney, D.F. Relationship between structural modeling and hyperelastic material behavior: application to CNS white matter", Biomech. Model. Mechanobiol., 1, pp. 279{293 (2003) 30. St_ephane, L. and St_ephane, B. An Abaqus toolbox for calculation of e_ective properties of heterogeneous materials", 10th National Symposium in Calculation of Structures, CSMA 2011, 9{13 May, Giens (Var) (2011). 794 H. Hoursan et al./Scientia Iranica, Transactions B: Mechanical Engineering 27 (2020) 784{794 31. Hollister, S.J. and Kikuchi, N. A comparison of homogenization and standard mechanics analyses for periodic porous composites", Computational Mechanics, 10(2), pp. 73{95 (1992). 32. Giordano, C., Cloots, R., Dommelen, J., Kleiven, S., and Geers, M. The inuence of anisotropy on brain injury prediction", J Biomech, 47, pp. 1052{9 (2014). Doi: 10.1016/j. j biomech. 2013.12.036 33. Atashpaz-Gargari, E. and Lucas, C. Imperialist competitive algorithm: An algorithm for optimization inspired by imperialistic competition", IEEE Congress on Evolutionary Computation, 7, pp. 4661{ 4666 (2007). 34. Rashid, B., Destrade, M., and Gilchrist, M.D. Mechanical characterization of brain tissue in tension at dynamic strain rates", Journal of the Mechanical Behavior of Biomedical Materials, 33, pp. 43{54 (2012). 10.1016/j.jmbbm.2012.07.015
Hoursan, H. , Farahmand, F. and Ahmadian, M. T. (2020). A novel procedure for micromechanical characterization of white matter constituents at various strain rates. Scientia Iranica, 27(2), 784-794. doi: 10.24200/sci.2018.50940.1928
MLA
Hoursan, H. , , Farahmand, F. , and Ahmadian, M. T. . "A novel procedure for micromechanical characterization of white matter constituents at various strain rates", Scientia Iranica, 27, 2, 2020, 784-794. doi: 10.24200/sci.2018.50940.1928
HARVARD
Hoursan, H., Farahmand, F., Ahmadian, M. T. (2020). 'A novel procedure for micromechanical characterization of white matter constituents at various strain rates', Scientia Iranica, 27(2), pp. 784-794. doi: 10.24200/sci.2018.50940.1928
CHICAGO
H. Hoursan , F. Farahmand and M. T. Ahmadian, "A novel procedure for micromechanical characterization of white matter constituents at various strain rates," Scientia Iranica, 27 2 (2020): 784-794, doi: 10.24200/sci.2018.50940.1928
VANCOUVER
Hoursan, H., Farahmand, F., Ahmadian, M. T. A novel procedure for micromechanical characterization of white matter constituents at various strain rates. Scientia Iranica, 2020; 27(2): 784-794. doi: 10.24200/sci.2018.50940.1928