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Abstract. Optimal hyperplastic coe�cients of the micromechanical constituents of the
human brain stem were investigated. An evolutionary optimization algorithm was combined
with a Finite Element (FE) model of a Representative Volume Element (RVE) to �nd the
optimal material properties of axon and Extra Cellular Matrix (ECM). The tension and
compression test results of a previously published experiment were used for optimizing the
material coe�cients, and the shear experiment was used for the validation of the resulting
constitutive model. The optimization algorithm was used to search for optimal shear moduli
and �ber sti�ness of axon and ECM by �tting the average stress in the axonal direction with
the results of the experiment. The resulting constitutive model was validated against the
shear stress results of the same experiment, showing strong agreement. The instantaneous
shear moduli and �ber sti�ness of both axon and ECM increased at higher strain rates,
while the axon-to-ECM shear modulus ratio decreased from the value of 10 at a strain rate
of 0.5/s to the value of 5 at a strain rate of 30/s. The proposed characterization procedure
and the resulting coe�cients may be applied to future multi-scale FE studies of the human
brain.

© 2020 Sharif University of Technology. All rights reserved.

1. Introduction

Di�use Axonal Injury (DAI) is a severe type of
Traumatic Brain Injury (TBI). This phenomenon is
characterized by microscopic damage to brain axons
in a vast area of white matter including focal damage
to the axons of the corpus callosum and brain stem.
The outcome is usually coma, with over 90% of patients
with severe DAI never regaining consciousness [1]. Few
survivors most often end up with poor neurological
functions as a result of delayed secondary axon dis-
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connections, slowly developing over an extended time
course [2].

Understanding the mechanical behavior of the
brain material is the key to predicting the response
of the tissue to external stimuli. The importance
of anisotropic behavior of the white matter has been
shown in several previous studies [3{6]. The character-
ization of the anisotropic hyper-viscoelastic material
of the white matter can improve the predication and
prognosis of TBI. To this end, experimental studies
play a central role. Several researchers have performed
tests with compressive, tensile, and shear oscillatory
loading at various strain rates and specimen geometries
to examine the material properties of the brain in vitro.
In this respect, among many other valuable publica-
tions, the works of Miller and Chinzei (2002) [7], Gefen
and Margulies (2004) [8], Hrapko et al. (2006) [9],
and Xin et al. (2013) [10] are referenced here. The
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results of in-vitro experimental tests on brain white
matter show that the resulting curves depend on several
factors including the number of hours post-mortem,
the examined region, strain rate, etc. Most of the
experiments have been performed at low strain rates
corresponding to low-speed phenomena such as tumor
growth, surgical procedures, etc., while fewer studies
have focused on high strain-rate conditions such as
that of TBI. Recently, Budday et al. [6,11] applied a
sequence of loading modes to the same human brain
specimen and characterized the loading-mode speci�c
regional and directional behaviors. They reported that
brain material had a pronounced compression-tension
asymmetry.

In the �eld of FE modeling, a great deal of
literature has been dedicated to the macro mechanical
and material modeling of the brain tissue (see e.g.,
[12{16]). However, given the anisotropic nature of
white matter discovered as a result of applying the
DTI technique and �ber tractography in recent years,
multi-scale models have gained considerable impor-
tance [6,17]. The relation between mechanical loading
at a macroscopic head level and cellular damage at
a microscopic level is a complex problem. Di�erent
length scales involved in the DAI have attracted many
researchers to study the multi-scale behavior of white
matter [18,19]. Since the introduction of the multi-scale
models, the micromechanical behavior of the white
matter has been under scrutiny due to its anisotropy
and heterogeneity, of which the former is represented
by axonal bundles extending through white matter
in various directions and the latter is the result of
regional dependence of axon-to-ECM volume fraction
throughout the white matter.

Among multi-scale models of white matter, mi-
cromechanical models have gained considerable atten-
tion where a Representative Volume Element (RVE)
consisting of �ber (axonal bundle) and ECM (Extra-
Cellular Matrix) is assumed to represent a unit cell
within the white matter (e.g., the brain stem). The
characterization of such an RVE can serve as a useful
tool to shift from a heterogeneous model to a homoge-
neous model in various sub-regions of the white matter.
Several researchers have attempted to characterize the
mechanical behavior of an RVE. Ning et al. (2006) [20]
developed a composite model with unidirectional �bers
to study the behavior of brain stem under �nite shear
deformation. They used a strain energy function to de-
termine the instantaneous response of the transversely
isotropic hyperelastic tissue. Karami and Shankar
(2011) [21] proposed a micromechanical composite
�brous RVE to study the homogenized behavior of
brain tissue with the nonlinear anisotropic hyperelastic
axon and matrix. Abolfathi et al. (2008) [22], Cloots
et al. 2013 [23], Javid et al. (2014), and Carlsen
and Daphalapurkar (2015) [24,25] are notable among

other important works in this area. In some studies,
authors have characterized the viscoelastic constants
of axon and ECM in the form of Prony series by �tting
the constants to a relaxation test [22,24]. In some
others, the authors have considered hyperelasticity of
the tissue and sought to include it in the form of
Holzapfel and Fung anisotropic models with constants
from the literature [21,23].

Recently, Latorre et al. (2016) [26] studied the
e�ect of considering the compression branch in the
characterization of the hyperelastic behavior of soft
biological tissues. They concluded that tensile tests
were not su�cient to characterize the material behavior
of soft biological tissues. By using theoretical formula-
tions for addressing the adequate determination of the
terms of stored energies, they showed that, in general,
both the extension and compression branches of a
uniaxial test were required to completely characterize
the material in order to use the obtained model in other
loading situations with con�dence in the results. In
other words, to properly characterize the hyperelastic
soft biological tissues, the compression and tension
branches of the uniaxial tests (or valid alternative tests)
must be considered.

Despite the previous e�orts made to characterize
the micromechanical behavior of brain tissue, the study
of the micromechanical behavior of the white matter
constituents (i.e., axon and ECM) has been mostly
limited to the small-strain linear viscoelastic response.
In addition, to the authors' knowledge, in previous
procedures for the hyperelastic characterization of
brain tissue, the important e�ect of the compression
branch on the results has been neglected, i.e., the
tension test results alone have been used to characterize
the material model. The current study seeks to �nd
the optimal hyperelastic constants of the Holzapfel
material model [27] for white matter constituents at
three characteristic strain rates. This is done by
using an evolutionary optimization algorithm to �t the
constants of the hyperelastic model with the results of
a previous experiment on a specimen at various strain
rates. The tension and compression tests are both used
to obtain the parameters, and the shear test results are
used to validate the resulting model.

2. Representative Volume Element (RVE)

RVE is de�ned as the smallest volume of which a
measurement can be made that will yield a value
representative of the whole [28]. In case of brain white
matter, this volume must contain the extra-cellular
matrix and at least one �ber (a bundle of axons), which
represents the geometry of the region under study [24].
Here, a cubic unit cell with a size of a conventional
T1 voxel from MRI Scanning is considered. The
axon-ECM volume ratio is obtained from the previous
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observations of post-mortem samples of porcine brain
stem. A single-�ber composite FE model is used with
perfect bonding between the constituents.

2.1. Finite Element (FE) model
FE model involving the geometry of a �ber and matrix
comprising a repetitive unit cell was developed. The
�ber was modeled as a partition to represent perfect
bonding within the matrix. The axonal volume fraction
has been reported to be 53% in two previous stud-
ies [3,29] and 52.7% [24] from the observations of the
porcine brain stem. Here, this fraction is assumed to
be 53%. Since the model contains a single �ber rather
than a random distribution of �bers, the hypothesized
size of the RVE does not a�ect the results of the
study. Here, The RVE edge (characteristic) length is
considered 2 mm. On the other hand, the e�ect of the
mesh size on the responses of the RVE is important and
must be considered. Therefore, a sensitivity analysis
was performed by changing the seed size from 0.01
to 0.2 mm while observing the average RVE stress
at various strain rates. Finally, the seed size of 0.1
mm was found to be �ne enough for stabilizing stress
changes at all three strain rates.

The model was meshed with the total number
of 1320 linear hexahedral elements of type C3D8R in
ABAQUS 6-14. This study used partitioning to obtain
fully symmetric mesh on opposite faces.

2.2. Periodic boundary conditions
Due to the repetitive nature of the RVE, special
boundary conditions known as the Periodic Bound-
ary Conditions (PBC) are required. A number of
researchers have shown that the choice of PBC yields
more reasonable results than other boundary condi-
tions such as stress uniform boundary condition or
kinematic uniform boundary conditions [30].

The PBC constraints must be applied such that
the unit cell deforms in a symmetric and identical
manner on the opposite sides. To establish the required

symmetry, the number and orientation of nodes on
opposite faces of the cell must be equal and similar.
The mesh on the opposite surfaces of the RVE must
be identical in order for the nodal displacements to
have one-to-one correspondence on opposite faces. This
will ensure the symmetry of displacements. In order to
enforce this condition, the relative displacement of each
pair of opposite nodes was formulated in terms of the
deformation gradient tensor (F ), which is applied to
the unit cell in the �ber direction. Since we are dealing
with large strains, it is ensured that the displacements
conform to the �nite strain theory of continuum.

Considering a deformation gradient �eld acting on
the unit cell with the characteristic length L, we get:

Fij i; j = 1; 2; 3: (1)

For each pair of nodes on two opposite faces
(considering the nodes on S+x and S�x as an example),
we get:

uS+x � uS�x � L(F11 � 1) = 0; (2)

vS+x � xS�x � LF12 = 0; (3)

wS+x � wS�x � LF13 = 0; (4)

where u, v, and w are the nodal displacements in x, y,
and z directions, respectively (Figure 1). For each node
on an edge, there are two sets of constraint equations
to be satis�ed since there are two adjacent edges and
two corresponding nodes. Taking a node on the edge
ES�xS+z as an example, we get:

uES+xS+z
� uES�xS+z

� L(F11 � 1) = 0; (5)

vES+xS+z
� vES�xS+z

� LF12 = 0; (6)

wES+xS+z
� wES�xS+z

� LF12 = 0: (7)

The second set can be obtained by changing the
sign of z-plane and rewriting the strains for direction 3
as follows:

Figure 1. The micromechanical RVE consisting of axon and ECM with a volume ratio of 53% (left). Meshed FE model of
the RVE with an illustration of surface, edge, and corner nodes. The normal vectors of the RVE faces are assumed outward.
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uES�xS+z
� uES�xS�z � LF13 = 0; (8)

vES�xS+z
� vES�xS�z � LF23 = 0; (9)

wES�xS+z
� wES�xS�z � L(F33 � 1) = 0: (10)

The same approach was applied to the corner
nodes. However, since each corner node is opposite
to three other corner nods, three sets of equations
(9 equations) govern the displacements of a corner
node. For brevity, the equations for displacement of the
corner node, uCS+xS+yS+z

, along x axis (u) are written
here:

uCS+xS+yS+z
� uCS�xS+yS+z

� L(F11 � 1) = 0; (11)

uCS+xS+yS+z
� uCS+xS�yS+z

� LF12 = 0; (12)

uCS+xS+yS+z
� uCS+xS+yS�z � LF13 = 0: (13)

Similarly, the remaining equations were derived
for displacements of the corner nodes along y and z
axes. The above equations were generated via a python
script. The redundant constraints were removed at the
end.

2.3. Volume averaging
Volume averaging was applied to the stress and strain
over the RVE to obtain homogenous results [31]. An
ABAQUS user subroutine was used to integrate the
nodal stress and strains over the volume of the RVE.
Eqs. (14) and (15) were used to estimate volume-
averaged values of the outputs:

��ij =
1
V

Z
V
�ij(x; y; z)dV; (14)

�"ij =
1
V

Z
V
"ij(x; y; z)dV; (15)

where ��ij and �"ij represent the volume-averaged values
of stress and strain, respectively. �ij and "ij are the
average nodal stress and strain, respectively, and V is
the volume of the RVE.

3. Material properties

In order to analyze the large-strain response of the tis-
sue at various strain rates, a hyper-viscoelastic model
was used for both axon and ECM. The Holzapfel-
Gasser-Ogden (HGO) strain energy function was used
to model the hyperelastic behavior of the constituents.
In addition, both axon and ECM were assumed to dis-
play the viscoelastic behavior characterized by Prony
series constants from a previous experiment.

3.1. Hyper elastic constitutive model
The form of the strain energy potential is based on

that proposed by Holzapfel et al. (2000) [27]. The
HGO model was originally developed for modeling
arterial layers with distributed collagen �ber orienta-
tions. However, later, it was generalized to account
for the �ber dispersion in brain white matter [25].
Wright and Daphalapurkar (2013) [18] and Giordano
et al. (2014) [32] demonstrated the application of
a simpli�ed version of the HGO model to the brain
by reducing the number of material parameters that
can be characterized from available experiments. The
general form of the function can be written as follows:

W =
G
2

(I1 � 3) +K
�
J2 � 1

4
� 1

2
ln J

�
+
k1

2k2

nX
i=1

(ek2< �Ei>2 � 1); (16)

where:

�Ei = �(I1 � 3) + (1� 3�)(I4l � 1); (17)

where W denotes the strain energy per unit volume; G
and K are the shear and bulk moduli, respectively; n
is the number of existing �ber families in the �ber-
matrix composite model; I1 is the �rst invariant of
the isochoric Cauchy-Green deformation tensor; J =
det(F ) is the volume ratio; and I4� = �C : ~n0i~n0i, where
�C = J

�2
3 C is the isochoric part of the right Cauchy-

Green deformation tensor and ~n0i stands for the unit
vector of �ber direction in the reference coordinate
system. The material parameter, K, describes the
dispersion of the �ber orientations around the preferred
�ber direction, ~n0i. K is zero for fully aligned �bers
denoting full transverse isotropy and 1

3 for isotropic
�ber orientation (randomly oriented �bers). The
Macaulay brackets cause �Ei to become zero in case its
value is negative and, thus, the �bers do not contribute
to compression.

By assuming a single direction for �bers in the
above equation and neglecting nonlinear sti�ness ef-
fects of the �ber (k2 ! 0), Eq. (17) is reduced to the
following:

W =
G
2

(I1 � 3) +K
�
J2 � 1

4
� 1

2
ln J

�
+
k1

2
h �E1i2:

(18)

This study used the HGO constitutive model for
both axon (�ber) and ECM, except that the ECM
is assumed to have isotopically oriented �bers (i.e.,
� = 1

3 ), while �ber is unidirectionally anisotropic
(i.e., � = 0). The bulk modulus is assumed constant
and equal to 2.5 GPa for both partitions. There is
a limited amount of data in the literature on shear
moduli of axon and ECM in the brain stem. Under
small deformation, Arbogast and Margulies (1999) [3]
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Table 1. Upper and lower bounds of Holzapfel hyperelastic constants for axon and ECM used in the optimization process.

Instantaneous shear
modulus (kPa)

Bulk modulus
(GPa)

Fiber sti�ness, k1

(kPa)
Dispersion parameter

(�)
Axon 0.1 to 10 2.5 5 to 1000 0
ECM 0.01 to 5 2.5 0.1 to 500 1

3

reported the instantaneous elastic moduli of axon and
ECM as 63.98 and 23.19 kPa, respectively. Javid
et al. (2014) [24] reported the values of the same
constituents as 12.86 and 4.29 kPa, respectively. Ning
et al. (2006) [20] computed the average initial shear
modulus of the brainstem matrix of 4-week-old pigs to
be 12.7 Pa. The �ber sti�ness (k1) of the Hozapfel
model is reported as 11.5 kPa for the axonal tissue by
Cloots et al. (2013) [23]. The optimization algorithm
will search for the instantaneous shear moduli (G)
and the �ber sti�ness (k1) of axon and ECM at three
di�erent strain rates. First, the optimal shear moduli
are obtained by �tting the stress response to the
compression test, followed by using tension tests to
obtain the optimal �ber sti�ness for both constituents.
The upper and lower bounds of the parameters are
de�ned based on the available data in the literature
(Table 1).

3.2. Viscoelastic behavior
Viscoelasticity may be introduced into the hyperelastic
model in the form of Prony series by using [23]:

S(t) =
Z t

0

"
M0 �X

i

Mie
�� t�p�i �# dSe

dp
dp; (19)

where p is the time variable that spans from the initial
time to the current time. S is the current deviatoric
second Piola-Kirchho� stress tensor, and Se is the
deviatoric elastic second Piola-Kirchho� stress tensor
as derived from the non-volumetric part of Eq. (18),
and M0 is the instantaneous parameter representing

Table 2. The proposed viscoelastic parameters of axon
and ECM in brain white matter [24].

M1 M2 �1 (s) �2 (s)

Axon 0.6039 0.1083 0.60097 0.49866
ECM 0.50001 0.25986 0.00623 0.9

the instantaneous role of the material parameters, G,
and k1. Mi and �i are time-dependent coe�cients
obtained from the material response in the relaxation
test. Here, the constants are assumed equal to those
proposed by Javid et al. (2014) (Table 2) [24].

4. Methods

4.1. Imperialist Competitive Algorithm (ICA)
The ICA [33] is an evolutionary optimization method.
The algorithm can be considered as the social coun-
terpart of Genetic Algorithms (GAs). The algo-
rithm starts with an initial population. Population
individuals called country are either colonies or im-
perialists such that all together form some empires.
The algorithm is based on imperialistic competition
among these empires. During this competition, weak
empires collapse and powerful ones with lower cost take
possession of their colonies. Imperialistic competition
converges to a state in which there exists only one
empire, and its colonies are in the same position and
have the same cost as the imperialist (Figure 2).

4.2. Optimization procedure
A two-step procedure to achieve optimal curve �tting

Figure 2. Flowchart of imperialist competitive algorithm [33].
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Figure 3. Flowchart of the procedure for �nding Holzapfel constants using optimal curve �tting with experimental
tension and compression tests.

Figure 4. Flowchart of the calculation of costs for each decade of ICA optimization with a Matlab script. �FEi is the
volume-averaged stress calculated from the FE RVE model at each increment. �Expi is the experimental stress from Xin et
al. (2013) discretized over the same number of increments (N) as the calculated stress.

was implemented. In the �rst step, the shear mod-
uli were obtained by �tting the model results with
compression test results. In the second step, the
�ber sti�ness values were found by implementing the
previous step (shear moduli) and �tting the model
results with tension test results. Finally, the full
model was compared by both tests (i.e., tension and
compression) to verify the coe�cients (Figure 3). The
cost function was de�ned as the sum of R2 (coe�cient
of determination) and RSME (Root Mean Square

Error) of stress values to account for qualitative and
quantitative errors of the obtained curves, respectively
(Figure 4). The stop condition is de�ned as a point
where only one empire is left as a result of imperialist
competition. This resulted in a di�erent number of
decades (iterations) before achieving convergence at
each run of the algorithm. Separate MATLAB scripts
were used to edit the material data of the python
script, run the python script in ABAQUS, and get the
results from ABAQUS ASCII output �le at each run.
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Table 3. Optimal Holzapfel hyperelastic material constants of axon and ECM of brain stem for three strain rates. Shear
moduli and �ber sti�ness are instantaneous values.

Minimum cost [R2 RSME]

Strain rate

Axon shear
modulus

(kPa)

ECM shear
modulus

(kPa)

Axon �ber
sti�ness
(kPa)

ECM �ber
sti�ness
(kPa)

Tension Compression

Low (0.5/s) 1.001301 0.1011852 293.063 4.892 0.1174
[0:990:1074]

0.3242
[0:96310:2873]

Average (5/s) 1.823 0.241 350.43 7.86 0.0456
[0:99870:0443]

0.1881
[0:97310:1612]

High (30/s) 4.2162 0.80099 410.955 8.21200 0.1983
[0:98360:1818]

0.1023
[0:98890:0912]

Figure 5. Plot of mean and minimum cost of all
countries with decades of ICA algorithm for average strain
rate analysis in tension. The algorithm converged after 48
decades with a minimum cost of 0.04.

For tension test at the average strain rate (5/s), the
algorithm was processed in ABAQUS 320 times and
converged after 11 hours and 48 decades (Figure 5).

5. Results

The optimal hyperelastic parameters in brain stem
were found by using the ICA optimization algorithm
together with several scripts for calculating costs at
each decade (iteration). Ten initial countries and four
initial imperialists were selected for the generation of
the �rst set of parameters. The algorithm was repeated
for three strain rates, namely low (0.5/s), medium
(5/s), and high (30/s) strain rates. The total strain
of 0.5 was applied in the �ber direction within the step
times of 1, 0.1, and 0.0167 seconds, respectively.

For the three cases, at each run, the volume
averaged stress values were requested at 30 increments
via a python script and written into an ABAQUS Inp
�le. The �le was then run by a MATLAB script, and
the results associated with the cost calculation at every
decade were obtained. The iteration was repeated until
a single empire was left, and the minimum cost was
found as a result. The results of the four Holzapfel
hyperelastic parameters for three strain rates are shown
in Table 3. Figure 5 shows the convergence of mean

Figure 6. Optimized calculated average stress in �ber
direction versus strain in comparison with the
experimental data for compression. Compressive strain of
0.5 is applied at three strain rates: LSR: Low Strain Rate
(0.5/s), ASR: Average Strain Rate (5/s), and HSR: High
Strain Rate: 30/s. Experimental curves of white matter
samples from Xin et al. (2013) [10].

Figure 7. Optimized calculated average stress in �ber
direction versus strain in comparison to the experimental
data for tension at three strain rates: LSR: Low Strain
Rate (0.5/s), ASR: Average Strain Rate (5/s), and HSR:
High Strain Rate: 30/s. Experimental curves of white
matter samples from Xin et al. (2013) [10].

cost of all empires and the minimum cost at 48 decades
during a run from the average strain rate scenario. The
obtained curves with minimum cost are plotted against
experimental data in Figures 6 and 7.



H. Hoursan et al./Scientia Iranica, Transactions B: Mechanical Engineering 27 (2020) 784{794 791

5.1. Validation with shear experiment
The optimal hyperelastic constants of Table 3 may
now be validated according to the shear experiments
of the referenced experimental study. For this purpose,
after applying the obtained optimal constants of the
HGO model and using the Prony series constants for
viscoelasticity, the shear stress of 0.5 was applied to
the RVE in the XZ plane (Figure 1) and the results
were obtained (Figure 8). The results show acceptable
quantitative agreement (RSME values in �gure) and
excellent qualitative similarity of the results (R2 values
in �gure).

6. Discussion

The main goal of this study is to �nd the optimal
hyperelastic constants of the HGO composite model

Figure 8. Optimized calculated stress in �ber direction
versus strain in comparison to the experimental data for
shear. Shear strain of 0.5 is applied at three strain rates:
LSR: Low Strain Rate (0.5/s), ASR: Average Strain Rate
(5/s), and HSR: High Strain Rate: 30/s. Experimental
curves of white matter samples from Xin et al. (2013) [10].

for the brain stem. To this end, an evolutionary
global optimization algorithm was used. The time-
dependent viscoelastic constants were obtained from a
previous relaxation test and included in the model in
the form of Prony series. The optimization algorithm
searched for HGO hyperelastic constants that could
best �t the existing experimental curves of tension and
compression. This is based on an important notion
that one uniaxial test is not enough to characterize
the hyperelastic behavior of soft biological tissues [26].
The shear moduli of axon and matrix were obtained
from �tting the compression test data and, then, the
Holzapfel �ber sti�ness values were found by �tting
the tension data. The results were obtained for three
strain rates, namely the low (0.5/s), average (5/s), and
high (30/s) strain rates. The optimal curve �tting
algorithm converged in various iterations (decades) in
the range of 30 to 100 with the initial population
(number of countries) of 10 in all simulations. Finally,
the obtained models were validated against the shear
experimental data of the same referenced article. The
results showed strong agreement both in trend and
quantity of the values, showing the reliability of the
HGO hyperelastic model for the simulation of the
tissue behavior (Figures 6-8). The �ber-direction stress
contours of the deformed RVE in three load cases
(i.e., tension, compression, and shear) are shown in
Figure 9. As can be seen, the stress values are several
times higher in axon than the ECM in tension and
compression. The symmetry of the stress distribution
throughout the RVE can be observed in the shear stress
contour, which occurs as a result of the applied periodic
boundary conditions.

Ning et al. (2006) [20] reported that the initial
shear modulus of axons was 10 times larger than
that of ECM under large deformation. This is in

Figure 9. Deformed contour of stress (MPa) for the low-strain-rate scenario at three modes of tension (left), compression
(center), and shear (right). The total strain of 0.5 ramped to 1 s. In case of tension and compression tests, normal stress is
shown, while the shear stress in the same plane of the applied strain (S23) is shown in the shear test.



792 H. Hoursan et al./Scientia Iranica, Transactions B: Mechanical Engineering 27 (2020) 784{794

agreement with the results of our study at low strain
rates. However, this ratio decreases to 5 at higher
strain rates. Rashid et al. (2012) [34] used a high
rater tension device to characterize the overall white
matter hyperelastic behavior of the porcine brain using
various hyperelastic models. They reported the tensile
engineering stress values at 30% strain as 3.1, 4.3, and
6.5 kPa at strain rates of 30, 60, and 90/s, respectively.
In the current study, the average RVE stress at 50%
strain and a strain rate of 30/s was 4.5 kPa, which
is in agreement in the order of magnitude. However,
it should be noted that the tension and compression
tests have both been used in the current study, while
only the extension of the tissue was considered in the
study of Rashid and Ning. In addition, shear moduli
of porcine white matter were evaluated by Rashid et
al. (2012) [34] in Fung, Gent, and Ogden hyperelastic
models at a strain rate of 30/s to be approximately 3
kPa. The proposed algorithm found the shear moduli
of axon and ECM at the same strain rate to be 4.2 and
0.8 kPa, respectively. Assuming that the tissue shear
modulus is the average of those of axon and ECM, the
obtained values of our �ndings are in good agreement
with those of the referenced studies.

Miller and Chinzei (2002) [7] concluded that
brain's sti�ness in compression was 20% higher than
that in tension. This result, which our model veri�es,
may imply that axons contribute to the tissue's behav-
ior in compression through an unknown mechanism.
This is important given the fact that �bers represent a
large portion of brain stem (e.g., 90% optic �ber volume
fraction in the composites of optic �ber-matrix of the
adult porcine brainstem [3].

7. Conclusions

The focus of this study was mainly to introduce a set
of (HGO) hyperelastic constants for the constituents
of the brain stem. The constants were obtained by
using an evolutionary optimization algorithm for three
strain rates. The algorithm searched for constants
that could best �t the resulting average stress curve
with a previous experiment. Based on the nature
of bio-tissues that required more than one test to
be characterized, both compression and tension test
results were used to reach the constants. The resulting
hyperelastic model was validated against the shear test
data of the same experiment. It was observed that
the results of applying shear strain to the model were
in acceptable agreement with those of the experiment.
On the other hand, the obtained shear moduli of axon
and ECM obtained from the optimization algorithm
were in the range of the previously reported values for
the anisotropic white matter tissue. The �ber sti�ness
values of axon were higher than those of the ECM, as
expected.

The e�ect of the compression branch of uniaxial
tests in the characterization of hyperelastic models of
brain is an important notion. Although it is assumed
in the hyperelastic constitutive models that �bers do
not contribute to compression, the results of this study
and some previous studies such as those of Miller and
Chinzei (2002) [7] and Latorre et al. (2016) [26] may
challenge this idea.

The current study used a single-directional com-
posite model to simulate the transversely isotropic
behavior of the brain stem. This is a basic simpli�-
cation of the reality of the white matter anisotropy.
In addition, in the application of Periodic Boundary
Conditions, the large strain assumption was used and
the equations were derived based on the �nite strain
theory. This will result in stresses in the form of the
second Piola-Kirchho� stress tensor. Finally, in the
case of (TBI), strain rates of up to 90/s have been
reported in the literature. Future studies may expand
the current method to investigate the hyperelastic
behavior of the tissue at higher strain rates.
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