References:
1. Trawinski, Z., Wojcik, J., Nowicki, A., Olszewski, R., Balcerzak, A., Frankowska, E., Zegadlo, A., and Rydzynski, P. "Strain examinations of the left ventricle phantom by ultrasound and multislices computed tomography imaging", Biocyber. Biomed. Eng., 35, pp. 255-263 (2015).
2. Bukala, J., Kwiatkowski, P., and Malachowski, J. "Numerical analysis of stent expansion process in coronary artery stenosis with the use of non-compliant ballon", Biocyber. Biomed. Eng., 36, pp. 145-156 (2016).
3. Eshghi, S.H., Rajabi, H., Darvizeh, A., Nooraeefar, V., Shafiei, A., Mirzababaie Mostofi, T., and Monsef, M. "A simple method for geometric modeling of biological structures using image processing technique", Sci. Iran., 23(5), pp. 2194-2202 (2016).
4. Przytulska, M., Gierblinski, I., Kuliusz, J., and Skoczylas, K. "Quantitative examination of liver tissue ultrasound elastograms", Biocyber. Biomed. Eng., 31(4), pp. 75-85 (2011).
5. Zanetti, M.E., Terzini, M., Mossa, L., Bignardi, C., Costa, P., Audenino, A.L., and Vezzoni, A. "A structural numerical model for the optimization of double pelvic osteotomy in the early treatment of canine hip dysplasia", Vet. Comp. Orthop. Traumatol., 4, pp. 1-9 (2017).
6. Kemper, A.R., Santago, A.C., Stitzel, J.D., Sparks, J.L., and Duma, S.M. "Effect of strain on the material properties of human liver parenchyma in unconfined compression", ASME J. Biomech. Eng., 135, pp. 1-8 (2013).
7. Rashid, B., Destrade, M., and Gilchrist, M.D. "Mechanical characterization of brain tissue in simple shear at dynamic strain rates", J. Mech. Behav. Biomed. Mater., 28, pp. 71-85 (2013).
8. Abbasi, A.A., Ahmadian, M.T., Alizadeh, A., and Tarighi, S. "Application of hyperelastic models in mechanical properties prediction of mouse oocyte and embryo cells at large deformations", Sci. Iran., 25(2), pp. 700-710 (2018).
9. Quapp, K.M. and Weiss, J.A. "Material characterization of human medial collateral ligament", ASME J. Biomech. Eng., 120, pp. 757-763 (1998).
10. Wang, X., Schoen, J.A., and Rentschler, M.E. "Aquantitative comparison of soft tissue compressive viscoelastic model accuracy", J. Mech. Behav. Biomed. Mater., 20, pp. 126-136 (2013).
11. Sharifi Sedeh, R., Ahmadian, M.T., and Janabi-Sharifi, F. "Modeling, simulation, and optimal initiation planning for needle insertion into the liver", ASME J. Biomech. Eng., 132, pp. 1-11 (2010).
12. Matin Ghahfarokhi, Z., Moghimi Zand, M., and Salmani Tehrani, M. "Analytical solution and simulation of the liver tissue behavior under uniaxial compression test", Modares Mechanical Engineering, 16(9), pp. 47-56 (1395) (in Persion).
13. Matin Ghahfarokhi, Z., Salmani Tehrani, M., Moghimi Zand, M., and Mahzoon, M. "A computational study on the effect of different design parameters on the accuracy of biopsy procedure", J. A. MECH., 46(2), pp. 221-231 (2015).
14. Troyer, K.L., Shetye, S.S., and Puttlitz, C.M. "Experimental characterization and finite element implementation of soft tissue nonlinear viscoelasticity", ASME J. Biomech. Eng., 134, pp. 1-8 (2012).
15. Zanetti, E.M., Perrini, M., Bignardi, C., and Audenino, A.L. "Bladder tissue passive response to monotonic and cyclic loading", Biorheol., 49, pp. 49-63 (2012).
16. Natali, A.N., Audenino, A.L., Artibani, W., Fontanella, C.G., Carniel, E.L., and Zanetti, E.M. "Bladder tissue biomechanical behavior: Experimental tests and constitutive formulation", J. Biomech., 48, pp. 3088-3096 (2015).
17. Oaz, H. "A biomechanical comparison between tissue stiffness meter and shore type 00 durometer using fresh human fetal membrane cadavers", Biocyber. Biomed. Eng., 36, pp. 138-144 (2016).
18. Khajehsaeid, H., Baghani, M., and Naghdabadi, R. "Finite strain numerical analysis of elastomeric bushings under multi-axial loadings: a compressible viscohyperelastic approach", Int. J. Mech. Mat. Des., 9, pp. 385-399 (2013).
19. Naghdabadi, R., Baghani, M., and Arghavani, J. "A viscoelastic constitutive model for compressible polymers based on logarithmic strain and its finite element implementation", Finite Elem. Anal. Des., 62, pp. 18-27 (2012).
20. Karimi, A., Navidbakhsh, M., and Beigzadeh, B. "A visco-hyperelastic constitutive approach for modeling polyvinylalcohol sponge", Tissue Cell, 46, pp. 97-102 (2014).
21. Tirella, A., Mattei, G., and Ahluwalia, A. "Strain rate viscoelastic analysis of soft and highly hydrated biomaterials", J. Biomed. Mat. Res., 102A(10), pp. 3352-3360 (2014).
22. Miller, K. "Constitutive model of brain tissue suitable for finite element analysis of surgical procedures", J. Biomech., 32, pp. 531-537 (1999).
23. Pipkin, A.C. and Rogers, T.G. "A nonlinear integral representation for viscoelastic behavior", J. Mech. Phys. Solids., 16, pp. 59-72 (1968).
24. Rajagopal, K.R. and Wineman, A.S. "Response of anisotropic nonlinearly viscoelastic solids", Math. Mech. Solids., 14, pp. 490-501 (2009).
25. Holzapfel, G.A., Nonlinear Solid Mechanics. A Continuum Approach for Engineering, pp. 205-256, Wiley, UK (2000).
26. Holzapfel, G.A. and Gasser, T.C. "A viscoelastic model for fiber-reinforced composites at finite strains: continuum basis, computational aspects and applications", Comput. Meth. Appl. Mech. Eng., 190, pp. 4379-4403 (2001).
27. Lu, Y.T., Zhu, H.X., Richmond, S., and Middleton, J. "A visco-hyperelastic model for skeletal muscle tissue under high strain rates", J. Biomech., 43, pp. 2629- 2632 (2010).
28. Limbert, G. and Middleton, J. "A constitutive model of the posterior cruciate ligament", Med. Eng. Phys., 28, pp. 99-113 (2006).
29. Laksari, k., Sadeghipour, K., and Darvish, K. "Mechanical response of brain tissue under blast loading", J Mech Behav Biomed Mater, 32, pp. 132-144 (2014).
30. Mansouri, M. and Darijani, H. "Constitutive modeling of isotropic hyperelastic materials in an exponential framework using a self- contained approach", Int. J. Solids Struct., 51(25), pp. 4316-4326 (2014).
31. Khan, A.S., Lopez-Pamies, O., and Kazmi, R. "Thermo-mechanical large deformation response and constitutive modeling of viscoelastic polymers over a wide range of strain rates and temperatures", Int. J. Plas., 22, pp. 581-601 (2006).
32. Khan, A.S. and Lopez-Pamies, O. "Time and temperature dependent response and relaxation of a soft polymer", Int. J. Plas., 18, pp. 1359-1372 (2002).
33. Limbert, G. and Middleton, J. "A transversely isotropic viscohyperelastic material application to the modeling of biological soft connective tissues", Int. J. Solis Struct., 41(15), pp. 4237-4260 (2004).