References:
1. Aghaie-Khafri, M. and Mahmudi, R. "Optimizing homogenization parameters for better stretch formability in an Al-Mn-Mg alloy sheet", Mater. Sci. Eng. A, 399, pp. 173-180 (2005).
2. Saito, Y., Utsunomiya, H., Tsuji, N., and Sakai, T. "Novel ultra-high straining process for bulk materialsdevelopment of the accumulative roll-bonding (ARB) process", Acta Mater., 47, pp. 579-583 (1999).
3. Valiev, R.Z. and Langdon, T.G. "Developing SPD methods for processing bulk nanostructured materials with enhanced properties", Metals Mater. Int., 7, pp. 413-420 (2001).
4. Yoon, E.Y., Lee, D.J., Park, B., Akbarpour, M.R., Farvizi, M., and Kim, H.S. "Grain refinement and tensile strength of carbon nanotube-reinforced Cu matrix nanocomposites processed by high-pressure torsion", Metals Mater. Int., 19, pp. 927-932 (2013).
5. Latypov, M.I., Lee, M.G., Beygelzimer, Y., Kulagin, R., and Kim, H.S. "Simple shear model of twist extrusion and its deviations", Metals. Mater. Int., 21, pp. 569-579 (2015).
6. Fatemi-Varzaneh, S.M. and Zarei-Hanzaki, A. "Accumulative back extrusion (ABE) processing as a novel bulk deformation method", Mater. Sci. Eng. A, 504, p. 104 (2009).
7. Binesh, B. and Aghaie-Khafri, M. "RUE-based semisolid processing: Microstructure evolution and effective parameters", Mater. Des., 95, pp. 268-286 (2016).
8. Zaharia, L., Comaneci, R., Chelariu, R., and Luca, D. "A new severe plastic deformation method by repetitive extrusion and upsetting", Mater. Sci. Eng. A, 595, pp. 135-142 (2014).
9. Aizawa, T. and Tokimutu, K. "Bulk mechanical alloying for productive processing of functional alloys", Mater. Sci. Forum, 312-314, pp. 13-22 (1999).
10. Raghu, I.B. "On the die design for repetitive upsettingextrusion (RUE) process", Int. J. Mater. Form., 6, pp. 289-301 (2013).
11. Balasundar, I., Ravi, K.R., and Raghu, T. "Strain softening in oxygen free high conductivity (OFHC) copper subjected to repetitive upsetting-extrusion (RUE) process", Mater. Sci. Eng., A583, pp. 114-122 (2013).
12. Balasundar, I. and Raghu, T. "Deformation behaviour of bulk materials during repetitive upsetting extrusion (RUE) process", Int. J. Mater. Form., 3, pp. 267-278 (2010).
13. Balasundar, I. and Raghu, T. "On the die design requirements of repetitive upsetting-extrusion (RUE) process", Int. J. Mater. Form., 6, pp. 289-301 (2013).
14. Sheppard, T. Extrusion of Aluminum Alloys, Springer Science+Business Media, B.V. (1999).
15. Balasundar, T. "Severe plastic deformation (SPD) using a combination of upsetting and extrusion", J. Metall. Eng. (ME), 2, pp. 130-139 (2013).
16. Balasundar, I. "Grain refinement in OFHC Cu subjected to repetitive upsetting extrusion (RUE) process", Mater. Sci. Forum, 710, pp. 270-275 (2012).
17. Hosford, W.F. and Caddell, R.M., Metal Forming, Mechanics and Metallurgy, Fourth Edition, Cambridge Univ. Press (2011).
18. Ranaei, M.A. "Microstructure, mechanical and electrical properties of commercially pure copper deformed severely by equal channel angular pressing", Int. J. Nanosci. Nanotech., 10, pp. 266-257 (2014).
19. Aghaie-Khafri, M. and Mahmudi, R. "The effect of preheating on the formability of an Al-Fe-Si alloy sheet", J. Mater. Process. Technol., 169, pp. 38-43 (2005).
20. XU, Y. "Microstructure and mechanical properties of AZ61 magnesium alloy prepared by repetitive upsetting-extrusion", Trans. Nonferrous Metals Soc., China, 25, pp. 381-388 (2015).
21. Lianxi, H., Yuping, L., Erde, W., and Yang, Y. "Ultrafine grained structure and mechanical properties of a LY12 Al alloy prepared by repetitive upsettingextrusion", Materi. Sci. Eng., A422, pp. 327-332 (2006).
22. Habibi, A. and Ketabchi, M. "Enhanced properties of nano-grained pure copper by equal channel angular rolling and post-annealing", Mater. Des., 34, pp. 483- 487 (2012).
23. Kommel, L. "Microstructure and properties development of copper during severe plastic deformation", Mater. Desi., 28, pp. 1221-2128 (2007).
24. Humphreys, F.J. and Hatherly, M., Recrystallization and Related Annealing Phenomena, Elsevier Ltd., (2004).
25. Enikeev, N.A. "Kinetic dislocation model of microstructure evolution during severe plastic deformation", Mater. Sci. Eng., A460, pp. 619-623 (2007).