References:
1. Garcia-Bartual, R. and Schneider, M. "Estimating maximum expected short-duration rainfall intensities from extreme convective storms", Phys. Chem. Earth. Pt. B., 26(9), pp. 675-681 (2001).
2. Yu, P.S., Yang, T.C., and Lin, C.S. "Regional rainfall intensity formulas based on scaling property of rainfall", J. Hydrol., 295(1-4), pp. 108-123 (2004).
3. Madsen, H., Arnbjerg-Nielsen, K., and Mikkelsen, P.S. "Update of regional intensity-duration-frequency curves in Denmark: tendency towards increased storm intensities", Atmos. Res., 92(3), pp. 343-349 (2009).
4. Agilan, V. and Umamahesh, N.V. "What are the best covariates for developing non-stationary rainfall intensity-duration-frequency relationship?", Adv. Water Resour., 101, pp. 11-22 (2017).
5. Huang, Y.F., Mirzaei, M., and Amin, M.Z.M. "Uncertainty quantification in rainfall intensity duration frequency curves based on historical extreme precipitation quantiles", Procedia Eng., 154, pp. 426-432 (2016).
6. Fadhel, S., Rico-Ramirez, M.A., and Han, D. "Uncertainty of Intensity-Duration-Frequency (IDF) curves due to varied climate baseline periods", J. Hydrol., 547, pp. 600-612 (2017).
7. Bezak, N., Sraj, M. and Mikos, M. "Copula-based IDF curves and empirical rainfall thresholds for ash floods and rainfall-induced landslides", J. Hydrol., 541(Part A), pp. 272-284 (2016).
8. Khan, M.S., Coulibaly, P., and Dibike, Y. "Uncertainty analysis of statistical downscaling methods", J. Hydrol., 319(1-4), pp. 357-382 (2006).
9. Wang, H. and Lau, K.M. "Atmospheric hydrological cycle in the tropics in twentieth century coupled climate simulations", Int. J. Climatol., 26(5), pp. 655- 678 (2006).
10. Hashmi, M.Z., Shamseldin, A.Y., and Melville, B.W. "Comparison of SDSM and LARS-WG for simulation and downscaling of extreme precipitation events in a watershed", Stoch. Env. Res. Risk A., 25(4), pp. 475- 484 (2011).
11. Gulacha, M.M. and Mulungu, D.M.M. "Generation of climate change scenarios for precipitation and temperature at local scales using SDSM in Wami-Ruvu River Basin Tanzania", Phys. Chem. Earth. Pts. A/B/C., 100, pp. 62-72 (2017).
12. Kuok, K.K., Mah, Y.S., Imteaz, M.A., and Kueh, S.M. "Comparison of future intensity duration frequency curve by considering the impact of climate change: case study for Kuching city", Int. J. River Basin Manag., 14(1), pp. 47-55 (2016).
13. Mailhot, A., Duchesne, S., Caya, D., and Talbot, G. "Assessment of future change in intensity-durationfrequency (IDF) curves for Southern Quebec using the Canadian Regional Climate Model (CRCM)", J. Hydrol., 347(1-2), pp. 197-210 (2007).
14. Alam, M.S. and Elshorbagy, A. "Quantification of the climate change-induced variations in intensityduration- frequency curves in the Canadian Prairies", J. Hydrol., 527, pp. 990-1005 (2015).
15. Kuo, C.C., Gan, T.Y., and Hanrahan, J.L. "Precipitation frequency analysis based on regional climate simulations in Central Alberta", J. Hydrol., 510, pp. 436-446 (2014).
16. Lima, C.H.R., Kwon, H.H., and Kim, J.Y. "A Bayesian beta distribution model for estimating rainfall IDF curves in a changing climate", J. Hydrol., 540, pp. 744-756 (2016).
17. Agilan, V. and Umamahesh, N.V. "Is the covariate based non-stationary rainfall IDF curve capable of encompassing future rainfall changes?", J. Hydrol., 541(Part B), pp. 1441-1455 (2016).
18. Simonovic, S.P., Schardong, A., Sandink, D., and Srivastav, R. "A web-based tool for the development of intensity duration frequency curves under changing climate", Environ. Modell. Softw., 81, pp. 136-153 (2016).
19. DeGaetano, A.T. and Castellano, C.M. "Future projections of extreme precipitation intensity-durationfrequency curves for climate adaptation planning in New York State", Clim. Serv., 5, pp. 23-35 (2017).
20. Kalantari, N., Rangzan, K., Thigale, S.S. and Rahimi, M.H. "Site selection and cost-benefit analysis for artificial recharge in the Baghmalek plain, Khuzestan province, southwest Iran", Hydrogeol. J., 18(3), pp. 761-773 (2010).
21. Gordon, C., Cooper, C., Senior, C.A., Banks, H., Gregory, J.M., Johns, T.C., Mitchell, J.F.B., and Wood, R.A. "The simulation of SST, sea ice extents and ocean heat transports in a version of the Hadley Centre coupled model without flux adjustments", Clim. Dynam., 16(2-3), pp. 147-168 (2000).
22. Pope, V.D., Gallani, M.L., Rowntree, P.R., and Stratton, R.A. "The impact of new physical parameterizations in the Hadley Centre climate model: HadAM3", Clim. Dynam., 16(2-3), pp. 123-146 (2000).
23. Collins, M., Tett, S.F.B., and Cooper, C. "The internal climate variability of HadCM3, a version of the Hadley Centre coupled model without flux adjustments", Clim. Dynam., 17(1), pp. 61-81 (2001).
24. Summary for policymakers-Emissions scenarios "A special report of working group III of the intergovernmental panel on climate change", (2000).
25. Orr, M.J.L., Introduction to Radial Basis Function Networks, Centre for Cognitive Science, 67 p, University of Edinburgh, Edinburgh, Scotland (1996).