Thermoelastic Deflection Responses of CNT Reinforced Sandwich Shell Structure using Finite Element Method

Document Type : Article

Authors

1 Research Scholar, Department of Mechanical Engineering, National Institute of Technology Rourkela, Odisha, India

2 Department of Mechanical Engineering, National Institute of Technology Rourkela, Odisha, India

3 School of Mechanical Engineering, KIIT University, Bhubaneswar, Odisha, India

Abstract

The bending responses of nanotube-reinforced curved sandwich shell panel structure are studied under the influence of the thermomechanical loading. Further, the temperature dependent material properties of the sandwich structure are assumed to evaluate the exact responses. In addition, the face sheets of the sandwich construction are modeled using different grading pattern through the panel thickness. The final form of the equilibrium equation of the deflected sandwich structure obtained by minimising the total potential energy functional. Now, the equation is solved computationally via a suitable computer code (MATLAB) using the novel higher-order kinematics including the finite element method. The constancy and the accuracy of the current finite element solutions are verified by solving a different kind of numerical examples as same as the published examples. The effect of parameters associated with structural stiffness and the flexural behaviour of the nanotube-reinforced curved sandwich structural panel are examined together with the unlike temperature distributions (uniform and linear) and discussed the final conclusions in detail.

Keywords

Main Subjects


References
1. Davies, G.A.O. and Olsson, R. \Impact on composite
structures", Aeronaut. J., 108(1089), pp. 541-563
(2004).
2. Houari, M.S.A., Benyoucef, S., Mechab, I., Tounsi,
A., and Bedia, E.A.A. \Two-variable re ned plate theory
for thermoelastic bending analysis of functionally
graded sandwich plates", J. Therm. Stress., 34(4), pp.
315-334 (2011).
3. Bouiadjra, M.B., Houari, M.S.A., and Tounsi, A.
\Thermal buckling of functionally graded plates according
to a four-variable re ned plate theory", J.
Therm. Stress, 35(8), pp. 677-694 (2012).
4. Tlidji, Y., Daouadji, T.H., Hadji, L., Tounsi, A.,
and Bedia, E.A.A. \Elasticity solution for bending
response of functionally graded sandwich plates under
thermomechanical loading", J. Therm. Stress., 37(7),
pp. 852-869 (2014).
5. Bouderba, B., Houari, M.S.A. and Tounsi, A. \Thermomechanical
bending response of FGM thick plates
resting on winkler-pasternak elastic foundations", Steel
Compos. Struct., 14(1), pp. 85-104 (2013).
6. Mirzaei, M. and Kiani, Y. \Snap-through phenomenon
in a thermally postbuckled temperature dependent
sandwich beam with FG-CNTRC face sheets", Compos.
Struct., 134, pp. 1004-1013 (2015).
7. Mirzaei, M. and Kiani, Y. \Free vibration of functionally
graded carbon nanotube reinforced composite
cylindrical panels", Compos. Struct., 142, pp. 45-56
(2016).
8. Kiani, Y. \Free vibration of FG-CNT reinforced composite
skew plates", Aerosp. Sci. Technol., 58, pp. 178-
188 (2016).
9. Mirzaei, M. and Kiani, Y. \Free vibration of functionally
graded carbon-nanotube-reinforced composite
plates with cutout", Beilstein J. Nanotechnol., 7, pp.
511-523 (2016).
10. Kiani, Y. \Free vibration of FG-CNT reinforced
composite spherical shell panels using Gram-Schmidt
shape functions", Compos. Struct., 159, pp. 368-381
(2017).
11. Mehar, K., Panda, S.K., Dehengia, A., and Kar,
V.R. \Vibration analysis of functionally graded carbon
nanotube reinforced composite plate in thermal environment",
J. Sandw. Struct. Mater., 18(2), pp. 151-
173 (2016).
12. Mohammadimehr, M. and Mostafavifar, M. \Free
vibration analysis of sandwich plate with a transversely

exible core and FG-CNTs reinforced nanocomposite
face sheets subjected to magnetic eld
and temperature-dependent material properties using
SGT", Compos. Part B Eng., 94, pp. 253-70 (2016).
13. Liu, Y.J. and Chen, X.L. \Evaluations of the e ective
material properties of carbon nanotube-based composites
using a nanoscale representative volume element",
Mech. Mater., 35, pp. 69-81 (2003).
14. Han, Y. and Elliott, J. \Molecular dynamics simulations
of the elastic properties of polymer/carbon
nanotube composites", Comput. Mater. Sci., 39(2),
pp. 315-323 (2007).
15. Gardea, F. and Lagoudas, D.C. \Characterization
of electrical and thermal properties of carbon nanotube/
epoxy composites", Compos. Part B Eng., 56,
pp. 611-620 (2014).
16. Aragh, B.S., Barati, A.H.N., and Hedayati, H.
\Eshelby-Mori-Tanaka approach for vibrational behavior
of continuously graded carbon nanotube-reinforced
cylindrical panels", Compos. Part B, 43(4), pp. 1943-
1954 (2012).
17. Zidi, M., Tounsi, A., Houari, M.S.A., Adda Bedia,
E.A., and Beg, O.A. \Bending analysis of FGM plates
under hygro-thermo-mechanical loading using a four
variable re ned plate theory", Aerosp. Sci. Technol.,
34(1), pp. 24-34 (2014).
18. Tounsi, A., Houari, M.S.A., Benyoucef, S., and Bedia,
E.A.A. \A re ned trigonometric shear deformation
theory for thermoelastic bending of functionally
graded sandwich plates", Aerosp. Sci. Technol., 24(1),
pp. 209-220 (2013).
19. Mahi, A., Bedia, E.A.A., and Tounsi, A. \A new
hyperbolic shear deformation theory for bending and
free vibration analysis of isotropic, functionally graded,
sandwich and laminated composite plates", Appl.
Math. Model., 39(9), pp. 2489-2508 (2015).
20. Bellifa, H., Halim, K., Hadji, B.L., Houari, M.S.A.,
and Tounsi, A. \Bending and free vibration analysis
of functionally graded plates using a simple shear
deformation theory and the concept the neutral surface
position", J. Brazilian Soc. Mech. Sci. Eng., 38, pp.
265-275 (2016).
21. Bennoun, M., Houari, M.S.A., and Tounsi, A. \A novel
ve variable re ned plate theory for vibration analysis
of functionally graded sandwich plates", Mech. Adv.
Mater. Struct., 23(4), pp. 423-431 (2016).
22. Hamidi, A., Houari, M.S.A., Mahmoud, S.R. and
Tounsi, A. \A sinusoidal plate theory with 5-unknowns
and stretching e ect for thermomechanical bending of
functionally graded sandwich plates", Steel Compos.
Struct., 18(1), pp. 235-253 (2015).
K. Mehar et al./Scientia Iranica, Transactions B: Mechanical Engineering 25 (2018) 2722{2737 2735
23. Shen, H.S. and Zhu, Z.H. \Postbuckling of sandwich
plates with nanotube-reinforced composite face
sheets resting on elastic foundations", Eur. J. Mech.
A/Solids, 35, pp. 10-21 (2012).
24. Xiang, S., Wang, K.M., Ai, Y.T., Sha, Y.D., and
Shi, H. \Analysis of isotropic, sandwich and laminated
plates by a meshless method and various shear deformation
theories", Compos. Struct., 91(1), pp. 31-37
(2009).
25. Nayak, A.K., Moy, S.S.J., and Shenoi, R.A. \Free
vibration analysis of composite sandwich plates based
on Reddy's higher-order theory", Compos. Part B
Eng., 33(7), pp. 505-519 (2002).
26. Shiau, L.C. and Kuo, S.Y. \Thermal buckling of
composite sandwich plates", Mech. Based Des. Struct.
Mach., 32(1), pp. 57-72 (2004).
27. Zenkour, A.M. \A comprehensive analysis of functionally
graded sandwich plates: Part 1- De
ection and
stresses", Int. J. Solids Struct., 42(18-19), pp. 5224-
5242 (2005).
28. Zenkour, A.M. \A comprehensive analysis of functionally
graded sandwich plates: Part 2-Buckling and free
vibration", Int. J. Solids Struct., 42(18-19), pp. 5243-
5258 (2005).
29. Yang, J., Kitipornchai, S., and Liew, K.M. \Nonlinear
local bending of FGM sandwich plates", J. Mech.
Mater. Struct., 3(10), pp. 1977-1992 (2008).
30. Imrak, E. and Fetvaci, C. \The de
ection solution of
a clamped rectangular thin plate carrying uniformly
load", Mech. Based Des. Struct. Mach., 37(4), pp. 462-
474 (2009).
31. Chandrashekhar, M. and Ganguli, R. \Nonlinear vibration
analysis of composite laminated and sandwich
plates with random material properties", Int. J. Mech.
Sci., 52(7), pp. 874-891 (2010).
32. Sadighi, M., Benvidi, M., and Eslami, M. \Improvement
of thermo-mechanical properties of transversely

exible sandwich panels by functionally graded skins",
J. Sandw. Struct. Mater., 13(5), pp. 539-577 (2011).
33. Kiani, Y., Bagherizadeh, E., and Eslami, M.R. \Thermal
and mechanical buckling of sandwich plates with
FGM face sheets resting on the Pasternak elastic
foundation", Proc. Inst. Mech. Eng. Part C J. Mech.
Eng. Sci., 226(1), pp. 32-41 (2012).
34. Mantari, J.L., Oktem, A.S., and Soares, C.G. \Static
and dynamic analysis of laminated composite and
sandwich plates and shells by using a new higher-order
shear deformation theory", Compos. Struct., 94(1),
pp. 37-49 (2011).
35. Hadji, L., Atmane, H.A., Tounsi, A., Mechab, I.,
and Addabedia, E.A. \Free vibration of functionally
graded sandwich plates using four-variable re ned
plate theory", Appl. Math. Mech., 32(7), pp. 925-942
(2011).
36. Khalili, S.M.R. and Mohammadi, Y. \Free vibration
analysis of sandwich plates with functionally graded
face sheets and temperature-dependent material properties:
A new approach", Eur. J. Mech. A/Solids, 35,
pp. 61-74 (2012).
37. Natarajan, S. and Manickam, G. \Bending and vibration
of functionally graded material sandwich plates
using an accurate theory", Finite Elem. Anal. Des.,
57, pp. 32-42 (2012).
38. Kavalur, P., Jeyaraj, P., and Babu, G.R. \Static
behaviour of visco-elastic sandwich plate with nanocomposite
facings under mechanical load", Procedia
Mater. Sci., 5, pp. 1376-1384 (2014).
39. Tornabene, F., Fantuzzi, N., Bacciocchi, M., and
Viola, E. \E ect of agglomeration on the natural
frequencies of functionally graded carbon nanotubereinforced
laminated composite doubly-curved shells",
Compos. Part B Eng., 89, pp. 187-218 (2016).
40. Szekrenyes, A. \Stress and fracture analysis in delaminated
orthotropic composite plates using third-order
shear deformation theory", Appl. Math. Model., 38,
pp. 3897-3916 (2014).
41. Saha, K.N., Misra, D., Ghosal, S., and Pohit, G.
\Nonlinear free vibration analysis of square plates with
various boundary conditions", J. Sound Vib., 287, pp.
1031-1044 (2005).
42. Topal, U. and Uzman, U. \E ects of nonuniform
boundary conditions on the buckling load optimization
of laminated composite plates", Mater. Des., 30(3),
pp. 710-717 (2009).
43. Topal, U. and Uzman, U. \Thermal buckling load
optimization of angle-ply laminated cylindrical shells",
Mater. Des., 30(3), pp. 532-536 (2009).
44. Apalak, M.K., Yildirim, M., and Ekici, R. \Layer
optimisation for maximum fundamental frequency of
laminated composite plates for di erent edge conditions",
Compos. Sci. Technol., 68(2), pp. 537-550
(2008).
45. Mehar, K. and Panda, S.K. \Thermal free vibration
behavior of FG-CNT reinforced sandwich curved panel
using nite element method", Polym. Compos. (2017).
DOI: http://dx.doi.org/10.1002/pc.24266.
46. Mehar, K. and Panda, S.K. \Numerical investigation
of nonlinear thermomechanical de
ection of functionally
graded CNT reinforced doubly curved composite
shell panel under di erent mechanical loads", Compos.
Struct., 161, pp. 287-298 (2017).
47. Zhu, P., Lei, Z.X., and Liew, K.M. \Static and
free vibration analyses of carbon nanotube-reinforced
composite plates using nite element method with
rst order shear deformation plate theory", Compos.
Struct., 94(4), pp. 1450-1460 (2012).
2736 K. Mehar et al./Scientia Iranica, Transactions B: Mechanical Engineering 25 (2018) 2722{2737
48. Moradi-Dastjerdi, R., Payganeh, G., and Tajdari,
M. \Thermoelastic analysis of functionally graded
cylinders reinforced by wavy CNT using a meshfree
method", Polym. Compos., 39(7), pp. 2190-2201
(2016). DOI: 10.1002/pc.24183.
49. Fazzolari, F.A. \Natural frequencies and critical temperatures
of functionally graded sandwich plates subjected
to uniform and non-uniform temperature distributions",
Compos. Struct., 121, pp. 197-210 (2015).
50. Mehar, K. and Panda, S.K. \Free vibration and
bending behaviour of CNT reinforced composite plate
using di erent shear deformation theory", IOP Conf.
Ser. Mater. Sci. Eng., 115, pp. 012014(1-16) (2016).
DOI: 10.1088/1757-899X/115/1/012014
51. Mahapatra, T.R., Panda, S.K., and Kar, V.R. \Nonlinear

exural analysis of laminated composite
at
panel under hygro-thermo-mechanical loading", Int. J.
Comput. Methods, 13(3), pp. 1650015 (2016).
52. Mehar, K. and Panda, S.K. \Geometrical nonlinear
free vibration analysis of FG-CNT reinforced composite

at panel under uniform thermal eld", Compos.
Struct., 143, pp. 336-346 (2016).
53. Cook, R.D., Malkus, D.S., Plesha, M.E., and Witt,
R.J., Concepts and Applications of Finite Element
Analysis, John Wiley & Sons Pvt. Ltd., Singapore
(2009).
54. Mehar, K. and Panda, S.K. \Thermoelastic analysis of
FG-CNT reinforced shear deformable composite plate
under various loadings", Int. J. Comput. Methods,
14(2), pp. 1750019 (2017).
55. Shen, H.S. and Zhang, C.L. \Thermal buckling and
postbuckling behavior of functionally graded carbon
nanotube-reinforced composite plates", Mater. Des.,
31(7), pp. 3403-3411 (2010).
56. Mirzaei, M. and Kiani, Y. \Thermal buckling of
temperature dependent FG-CNT reinforced composite
plates", Meccanica, 51(9), pp. 2185-2201 (2016).
57. Reddy, J.N. and Liu, C.F. \A higher-order shear
deformation theory of laminated elastic shells", Int.
J. Eng. Sci., 23(3), pp. 319-330 (1985).
58. Ferreira, A.J.M., Carrera, E., Cinefra, M., and Roque,
C.M.C. \Analysis of laminated doubly-curved shells
by a layerwise theory and radial basis functions collocation,
accounting for through-the-thickness deformations",
Comput. Mech., 48(1), pp. 13-25 (2011).
59. Thai, H.T., Nguyen, T.K., Vo, T.P., and Lee, J.
\Analysis of functionally graded sandwich plates using
a new rst-order shear deformation theory", Eur. J.
Mech. - A/Solids, 45, pp. 211-225 (2014).

Volume 25, Issue 5 - Serial Number 5
Transactions on Mechanical Engineering (B)
September and October 2018
Pages 2722-2737
  • Receive Date: 21 April 2017
  • Revise Date: 02 June 2017
  • Accept Date: 11 September 2017