References
1.Sander, G.C., Parlange, J.Y., Kuhnel, V., Hogarth,W.L., Lockington, D. and O'Kane, J.P.J. Exactnonlinear solution for constant ux in ltration",J.Hydrol.,83, pp. 341-346 (1988).2.Broadbridge, P. and White, I. Constant rate rain fallin ltration: a versatile nonlinear model 1",Anal. Sol.Water. Res. Res.,24, pp. 145-154 (1988).3.Tracy, F.T. Three dimensional analytical solutions ofRichard's equation for a box shaped soil sample withpiecewise-constant head boundary conditions on thetop",J. Hydrol.,336(3), pp. 391-400 (2007).4.Menziani, M., Puganghi, S. and Vincenzi, M. Analyt-ical solutions of the linearized Richard's equation fordiscrete arbitrary initial and boundary conditions",J.Hydrol.,332(1-2) pp. 214-225 (2007).5.Huang, R.Q. and Wu, L.Z. Analytical solutionsto 1-D horizontal and vertical water in ltration insaturated/unsaturated soils considering time-varyingrainfall",J. Comp. Geotec.,39, pp. 66-72 (2012).6.Haverkamp, R., Vauclin, M., Touma, J., Wiereng,P.J. and Vachaud, G. A comparison of numericalsimulation models for one-dimensional in ltration",J.Soil Soc. Am.,41, pp. 285-293 (1977).7.G0ttardi, G. and Venutelli, M. Two-dimensional nite-element groundwater ow model for saturated-unsaturated soils",J. Comput. Geosci.,27, pp. 179-189 (2001).8.Narado, N., Braud, I., Ross, P.J. and Haverkamp, R.Assessment of an ecient numerical solution of the1D Richard's equation on bare soil",J. Hydrol.,323(1-4), pp. 244-257 (2006).9.Taheri Shahraiyani, H. and Ataei Ashtiani, B. Com-parison of nite di erence schemes for water ow inunsaturated soils",Int. J. Aerosp. Mech. Eng.,3(1),pp. 1-5 (2009).10.An, H., Ichikawa, Y., Tachikawa, Y. and Shiiba, M.A new Iterative Alternating Direction Implicit (IADI)algorithm for multi-dimensional saturated-unsaturated ow",J. Hydrol.,408, pp. 127-139 (2011).11.Bergamaschi, L. and Putti, M. Mixed nite elementsand Newton-type linearizations for the solution of Richards",Int. J. Num. Methods. Eng.,45, pp. 1025-46 (1999).12.Gottardi, G. and Venutelli, M. Two-dimensional nite-element groundwater ow model for saturated-unsaturated soils",J. Comput. Geosci.,27, pp. 179-189 (2001).13.He, X. and Ren, L. An adaptive multiscale niteelement method for unsaturated ow problems inheterogeneous porous media",J. Hydrol.,pp. 56-70(2009).14.Ginting, V. Time integration techniques for Richard'sequation",Procedia Comput. Sci.,9. pp. 670-678(2012).15.Eymard, R., Gutnic, M. and Hilhorst, D. The nitevolume method for Richards' equation",J. Comput.Geosci.,12, pp. 259-294 (1999).16.Manzini, G. and Ferraris, S. Mass-conservative nitevolume methods on 2-D unstructured grids for theRichards' equation",J. Adv. Water. Res.,27, pp.1199-1215 (2004)17.Misiats, O. and Lipnikov, K. Second-order accuratemonotone nite volume scheme for Richard's equa-tion",J. Comput. Phys.,239, pp. 123-137 (2013).18.Zambra, C.E., Dumbser, M., Toro, E.F. and Moraga,N.O. A novel numerical method of high order accu-racy for ow in unsaturated porous media",Int. J.Numer. Meth. Eng.,89, pp. 227-240 (2012).19.Caviedes Voullieme, D., Garcia Navarro, P. andMurillo, J. Veri cation, conservation, stability andeciency of a nite volume method for the 1D Richardsequation",J. Hydrol.,480, pp. 69-84 (2013).20.Juncu, G., Nikola, A. and Popa, C. Nonlinear multi-grid methods for numerical solution of the unsaturated ow equation in two space dimensions",J. Transp.Porous. Med.,83, pp. 637-652 (2010).21.Carr, E.J., Moroney, T.J. and Turner, I.W. Ecientsimulation of unsaturated ow using exponential timeintegration",J. Appl. Matt. Comput.,217(14), pp.6587-6596 (2011).22.Shu, C.Di erential Quadrature and Its Application inEngineering, Springer, Singapore (2000).23.Hashemi, M.R. and Hatam, F. Unsteady seepageanalysis using local radial basis function based di er-ential quadrature method",Appl. Math. Model.,35,pp. 4934-4950 (2011).
4.Hu, Y.J., Zhu, Y.Y. and Cheng, C.J. DQM for dy-namic response of uid-saturated visco-elastic porousmedia",Int. J. Solids Struct.,46, pp. 1667-1675(2009).25.Chen, R.P., Zhou, W.H., Wang, H.Z. and Chen, Y.M.One-dimensional nonlinear consolidation of multi-layered soil by di erential quadrature method",J.Comput. Geotec.,32, pp. 358-369 (2009).26.White, I. and Broadbridge, P. Constant rate rainfallin ltration: a versatile nonlinear model 2",J. Appl.Sol. Water Res. Res., pp. 155-162 (1988).27.Van Genuchten, M.T. A closed-form equation forpredicting the hydraulic conductivity of unsaturatedsoils",J. Soil Sci. Soc. Am.,44, pp. 892-898 (1980).28.Belman, R., Kahef, B. and Casti, J. Di erentialquadrature a technique for the rapid solution of nonlin-ear partial di erential equations",J. Comput. Phys.,10, pp. 40-52 (1972).29.Kuraz, M., Mayer, P., Leps, M. and Trpkosoa, D.An adaptive time discretization of the classical andthe dual porosity model of Richards' equation",J.Comput. App. Math.,233, pp. 3167-3177 (2010).30.Asghari, A., Bagheripour, M.H. and Mollazadeh, M.A generalized analytical solution for a nonlinearin ltration equation using the exp-function method",J. Scientia Iranica,18(1), pp. 28-35 (2011).31.Brooks, R.H. and Corey, A.T.Hydraulic Properties ofPorous Media, Colorado State University, Fort Collins,Hydrology Paper,3(1964).