References
1. Zhang, Z.H., Liu, Z.F., Lu, J.F., Shen, X.B., Wang,
F.C., and Wang, Y.D. \The sintering mechanism in
spark plasma sintering - Proof of the occurrence of
spark discharge", Scr. Mater., 81, pp. 56-59 (2014).
2. Kumar, M.S., Chandrasekar, P., Chandramohan, P.,
and Mohanraj, M. \Characterisation of titaniumtitanium
boride composites processed by powder metallurgy
techniques", Mater. Charact., 73, pp. 43-51
(2012).
3. Borkar, T., Nag, S., Ren, Y., Tiley, J., and Banerjee,
R. \Reactive spark plasma sintering (SPS) of
nitride reinforced titanium alloy composites", J. Alloys
Compd., 617, pp. 933-945 (2014).
4. Ji, L., Chen, B., Li, S.F., Imai, H., Takahashi, M., and
Kondoh, K. \Stability of strengthening eect of in situ
formed TiCp and TiBw on the elevated temperature
strength of (TiCp + TiBw)/Ti composites", J. Alloys
Compd., 614, pp. 29-34 (2014).
5. Chaudhari, R. and Bauri, R. \Reaction mechanism,
microstructure and properties of Ti-TiB in situ composite
processed by spark plasma sintering", Mater.
Sci. Eng., A, 587, pp. 161-167 (2013).
6. Zhang, Z.H., Shen, X.B., Wen, S., Luo, J., Lee, S.K.,
and Wang, F.C. \In situ reaction synthesis of Ti-TiB
composites containing high volume fraction of TiB by
spark plasma sintering process", J. Alloys Compd.,
503, pp. 145-150 (2010).
7. Shen, X., Zhang, Z., Wei, S., Wang, F., and Lee, S.
\Microstructures and mechanical properties of the in
situ TiB-Ti metal-matrix composites synthesized by
spark plasma sintering process", J. Alloys Compd.,
509, pp. 7692-7696 (2011).
8. Feng, H., Jia, D., and Zhou, Y. \Spark plasma
sintering reaction synthesized TiB reinforced titanium
matrix composites", Composites: Part A, 36, pp. 558-
563 (2005).
9. Morsi, K., Patel, V.V., Naraghi, S. and Garay, J.E.
\Processing of titanium-titanium boride dual matrix
composites", J. Mater. Process. Technol., 196, pp.
236-342 (2008).
10. Feng, H.B., Zhou, Y., Jia, D.C., and Meng, Q.C.
\Microstructure and mechanical properties of in situ
TiB reinforced Titanium matrix composites based
on Ti-FeMo-B prepared by spark plasma sintering",
Compos. Sci. Technol., 64, pp. 2495-2500 (2004).
11. Zhang, C., Kong, F., Xiao, S., Niu, H., Xu, L., and
Chen, Y. \Evolution of microstructural characteristic
and tensile properties during preparation of TiB/Ti
composite sheet", Mater. Des., 36, pp. 505-510 (2012).
12. Tjong, S.C. and Mai, Y.W. \Processing-structureproperty
aspects of particulate- and whisker-reinforced
titanium matrix composites", Compos. Sci. Technol.,
68, pp. 560-583 (2008).
13. Morsi, K. and Patel, V.V. \Processing and properties
of titanium-titanium boride (TiBw) matrix
composites{a review", J. Mater. Sci., 42, pp. 2037-
2047 (2007).
14. Wang, M.M., Lu, W.J., Qin, J.N., Ma, F.C., Lu,
J.Q., and Zhang, D. \Eect of volume fraction of
reinforcement on room temperature tensile property
of in situ (TiB+TiC)/Ti matrix composites", Mater.
Des., 27, pp. 494-498 (2006).
15. Huang, L.J., Geng, L., Li, A.B., Yang, F.Y., and Peng,
H.X. \In situ TiBw/Ti-6Al-4V composites with novel
reinforcement architecture fabricated by reaction hot
pressing", Scr. Mater., 60, pp. 996-999 (2009).
16. Boehlert, C.J., Tamirisakandala, S., Curtin, W.A.,
and Miracle, D.B. \Assessment of in situ TiB whisker
tensile strength and optimization of TiB-reinforced
titanium alloy", Scr. Mater., 61, pp. 245-248 (2009).
17. Sung, S.Y., Choi, B.J., and Kim, Y.J. \Evaluation the
properties of titanium matrix composites by melting
route synthesis", J. Mater. Sci. Technol, 24, pp. 105-
109 (2008).
18. Abkowitz, S., Abkowitz, S.M., Fisher, H., and
Schwartz, P.J. \CermeTi discontinuously reinforced
Ti-matrix composites: manufacturing, properties, and
applications", JOM, 56, pp. 37-41 (2004).
19. Tjong, S.C. and Ma, Z.Y. \Microstructural and mechanical
characteristics of in situ metal matrix composites",
Mater. Sci. Eng., R, 29, pp. 49-113 (2000).
20. Shufeng, L.I., Kondoh, K., Imai, H., Chen, B., Jia, L.,
and Umeda, J. \Microstructure and mechanical properties
of P/M titanium matrix composites reinforced
by in-situ synthesized TiC-TiB", Mater. Sci. Eng., A,
628, pp. 75-83 (2015).
21. Wei, S., Zhang, Z.H., Wang, F.C., Shen, X.B., Cai,
H.N., Lee, S.K., and Wang, L. \Eect of Ti content
and sintering temperature on the microstructures and
mechanical properties of TiB reinforced titanium composites
synthesized by SPS process", Mater. Sci. Eng.,
A, 560, pp. 249-255 (2013).
22. Tabrizi, S.G., Sajjadi, S.A., Babakhani, A., and Lu, W.
\In
uence of spark plasma sintering and subsequent
hot rolling on microstructure and
exural behavior of
in-situ TiB and TiC reinforced Ti6Al4V composite",
Mater. Sci. Eng., A, 624, pp. 271-278 (2015).
A. Sabahi Namini et al./Scientia Iranica, Transactions B: Mechanical Engineering 25 (2018) 762{771 771
23. Zhang, C.J., Kong, F.T., Xiao, S.L., Zhao, E.T., Xu,
L.J., and Chen, Y.Y. \Evolution of microstructure and
tensile properties of in situ titanium matrix composites
with volume fraction of (TiB + TiC) reinforcements",
Mater. Sci. Eng., A, 548, pp. 152-160 (2012).
24. Shen, X., Zhang, Z., Wei, S., Wang, F., and Lee, S.
\Microstructures and mechanical properties of the in
situ TiB-Ti metal-matrix composites synthesized by
spark plasma sintering process", J. Alloys Compd.,
509, pp. 7692-7696 (2011).
25. Patel, V.V., El-Desouky, A., Garay, J.E., and Morsi,
K. \Pressure-less and current-activated pressureassisted
sintering of titanium dual matrix composites:
Eect of reinforcement particle size", Mater. Sci. Eng.,
A, 507, pp. 161-166 (2009).
26. Zhang, C.J., Kong, F.T., Xu, L.J., Zhao, E.T., Xiao,
S.L., Chen, Y.Y., Deng, N.J., Geb, W., and Xu, G.J.
\Temperature dependence of tensile properties and
fracture behavior of as rolled TiB/Ti composite sheet",
Mater. Sci. Eng., A, 556, pp. 962-969 (2012).
27. Yan, Z., Chen, F., Cai, Y., and Zheng, Y. \Microstructure
and mechanical properties of in-situ synthesized
TiB whiskers reinforced titanium matrix composites by
high-velocity compaction", Powder Technol., 267, pp.
309-314 (2014).
28. Shahedi Asl, M., Sabahi Namini, A., and Ghassemi
Kakroudi, M. \In
uence of silicon carbide reinforcement
on the microstructural development of hot
pressed zirconium and titanium diborides", Ceram.
Int., 42, pp. 5375-5381 (2016).
29. Sabahi Namini, A., Seyed Gogani, S.N., Shahedi Asl,
M., Farhadi, K., Ghassemi Kakroudi, M., and Mohammadzadeh,
A. \Microstructural development and
mechanical properties of hot pressed SiC reinforced
TiB2 based composite", Int. J. Refract. Met. Hard
Mater., 51, pp. 169-179 (2015).
30. Huang, L.J., Geng, L., Peng, H.X., Balasubramaniam,
K., and Wang, G.S. \Eects of sintering parameters
on the microstructure and tensile properties of in
situ TiBw/Ti6Al4V composites with a novel network
architecture", Mater. Des., 32, pp. 3347-3353 (2011).
31. Huang, L.J., Geng, L., Wang, B., and Wu, L.Z.
\Eects of volume fraction on the microstructure and
tensile properties of in situ TiBw/Ti6Al4V composites
with novel network microstructure", Mater. Des., 45,
pp. 532-538 (2013).
32. Huang, L.J., Geng, L., Peng, H.X., and Zhang, J.
\Room temperature tensile fracture characteristics
of in situ TiBw/Ti6Al4V composites with a quasicontinuous
network architecture", Scr. Mater., 64, pp.
844-847 (2011).
33. Huang, L.J., Geng, L., Wang, B., Xu, H.Y., and
Kaveendran, B. \Eects of extrusion and heat treatment
on the microstructure and tensile properties
of in situ TiBw/Ti6Al4V composite with a network
architecture", Composites Part A, 43, pp. 486-491
(2012).
34. Zhang, C.J., Kong, F.T., Xiao, S.L., Zhao, E.T., Xu,
L.J., and Chen, Y.Y. \Evolution of microstructure and
tensile properties of in situ titanium matrix composites
with volume fraction of (TiB + TiC) reinforcements",
Mater. Sci. Eng., A, 548, pp. 152- 160 (2012).
35. Wei, S., Zhang, Z.H., Wang, F.C., Shen, X.B., Cai,
H.N., Lee, S.K., and Wang, L. \Eect of Ti content
and sintering temperature on the microstructures and
mechanical properties of TiB reinforced titanium composites
synthesized by SPS process", Mater. Sci. Eng.,
A, 560, pp. 249-255 (2013).
36. Li, B.S., Shang, J.L., Guo, J.J., and Fu, H.Z. \In situ
observation of fracture behavior of in situ TiBw/Ti
composites", Mater. Sci. Eng., A, 383, pp. 316-322
(2004).