Effects of in-situ formed TiB whiskers on microstructure and mechanical properties of spark plasma sintered Ti–B4C and Ti–TiB2 composites

Document Type : Article

Authors

1 Department of Materials Engineering, Sahand University of Technology, Tabriz, Iran

2 Department of Mechanical Engineering, University of Mohaghegh Ardabili, Ardabil, Iran

Abstract

Monolithic titanium, Ti–1 wt% B4C, Ti–2.5 wt% TiB2 were spark plasma sintered at 1050 ºC for 5 min under 50 MPa. The effect of B4C and TiB2 additions on densification process, microstructural development and mechanical properties of titanium was investigated. The results revealed that relative density of undoped, B4C- and TiB2-doped Ti samples reached ~98-99%. X-ray diffraction patterns, thermodynamic assessments, and microstructural investigations verified the in-situ formation of TiB whiskers in both composite samples as well as appearance of TiC spheres in Ti–B4C composite. However, trace unreacted TiB2 and B4C additives were remained in the composites as a result of incomplete chemical reactions due to short-time SPS process. Compared to undoped Ti sample, grain growth was hindered when the sample was doped by B4C or TiB2. Elongation, ultimate tensile strength and Vickers hardness of B4C- or TiB2-doped samples were higher than those of monolithic titanium but bending strength of ceramic-doped samples significantly lower, compared to undoped titanium. These outcomes were discussed in detail and related to presence/formation of several ceramic phases with different morphologies in Ti matrix.

Keywords

Main Subjects


References

1. Zhang, Z.H., Liu, Z.F., Lu, J.F., Shen, X.B., Wang,
F.C., and Wang, Y.D. \The sintering mechanism in
spark plasma sintering - Proof of the occurrence of
spark discharge", Scr. Mater., 81, pp. 56-59 (2014).
2. Kumar, M.S., Chandrasekar, P., Chandramohan, P.,
and Mohanraj, M. \Characterisation of titaniumtitanium
boride composites processed by powder metallurgy
techniques", Mater. Charact., 73, pp. 43-51
(2012).
3. Borkar, T., Nag, S., Ren, Y., Tiley, J., and Banerjee,
R. \Reactive spark plasma sintering (SPS) of
nitride reinforced titanium alloy composites", J. Alloys
Compd., 617, pp. 933-945 (2014).
4. Ji, L., Chen, B., Li, S.F., Imai, H., Takahashi, M., and
Kondoh, K. \Stability of strengthening e ect of in situ
formed TiCp and TiBw on the elevated temperature
strength of (TiCp + TiBw)/Ti composites", J. Alloys
Compd., 614, pp. 29-34 (2014).
5. Chaudhari, R. and Bauri, R. \Reaction mechanism,
microstructure and properties of Ti-TiB in situ composite
processed by spark plasma sintering", Mater.
Sci. Eng., A, 587, pp. 161-167 (2013).
6. Zhang, Z.H., Shen, X.B., Wen, S., Luo, J., Lee, S.K.,
and Wang, F.C. \In situ reaction synthesis of Ti-TiB
composites containing high volume fraction of TiB by
spark plasma sintering process", J. Alloys Compd.,
503, pp. 145-150 (2010).
7. Shen, X., Zhang, Z., Wei, S., Wang, F., and Lee, S.
\Microstructures and mechanical properties of the in
situ TiB-Ti metal-matrix composites synthesized by
spark plasma sintering process", J. Alloys Compd.,
509, pp. 7692-7696 (2011).
8. Feng, H., Jia, D., and Zhou, Y. \Spark plasma
sintering reaction synthesized TiB reinforced titanium
matrix composites", Composites: Part A, 36, pp. 558-
563 (2005).
9. Morsi, K., Patel, V.V., Naraghi, S. and Garay, J.E.
\Processing of titanium-titanium boride dual matrix
composites", J. Mater. Process. Technol., 196, pp.
236-342 (2008).
10. Feng, H.B., Zhou, Y., Jia, D.C., and Meng, Q.C.
\Microstructure and mechanical properties of in situ
TiB reinforced Titanium matrix composites based
on Ti-FeMo-B prepared by spark plasma sintering",
Compos. Sci. Technol., 64, pp. 2495-2500 (2004).
11. Zhang, C., Kong, F., Xiao, S., Niu, H., Xu, L., and
Chen, Y. \Evolution of microstructural characteristic
and tensile properties during preparation of TiB/Ti
composite sheet", Mater. Des., 36, pp. 505-510 (2012).
12. Tjong, S.C. and Mai, Y.W. \Processing-structureproperty
aspects of particulate- and whisker-reinforced
titanium matrix composites", Compos. Sci. Technol.,
68, pp. 560-583 (2008).
13. Morsi, K. and Patel, V.V. \Processing and properties
of titanium-titanium boride (TiBw) matrix
composites{a review", J. Mater. Sci., 42, pp. 2037-
2047 (2007).
14. Wang, M.M., Lu, W.J., Qin, J.N., Ma, F.C., Lu,
J.Q., and Zhang, D. \E ect of volume fraction of
reinforcement on room temperature tensile property
of in situ (TiB+TiC)/Ti matrix composites", Mater.
Des., 27, pp. 494-498 (2006).
15. Huang, L.J., Geng, L., Li, A.B., Yang, F.Y., and Peng,
H.X. \In situ TiBw/Ti-6Al-4V composites with novel
reinforcement architecture fabricated by reaction hot
pressing", Scr. Mater., 60, pp. 996-999 (2009).
16. Boehlert, C.J., Tamirisakandala, S., Curtin, W.A.,
and Miracle, D.B. \Assessment of in situ TiB whisker
tensile strength and optimization of TiB-reinforced
titanium alloy", Scr. Mater., 61, pp. 245-248 (2009).
17. Sung, S.Y., Choi, B.J., and Kim, Y.J. \Evaluation the
properties of titanium matrix composites by melting
route synthesis", J. Mater. Sci. Technol, 24, pp. 105-
109 (2008).
18. Abkowitz, S., Abkowitz, S.M., Fisher, H., and
Schwartz, P.J. \CermeTi discontinuously reinforced
Ti-matrix composites: manufacturing, properties, and
applications", JOM, 56, pp. 37-41 (2004).
19. Tjong, S.C. and Ma, Z.Y. \Microstructural and mechanical
characteristics of in situ metal matrix composites",
Mater. Sci. Eng., R, 29, pp. 49-113 (2000).
20. Shufeng, L.I., Kondoh, K., Imai, H., Chen, B., Jia, L.,
and Umeda, J. \Microstructure and mechanical properties
of P/M titanium matrix composites reinforced
by in-situ synthesized TiC-TiB", Mater. Sci. Eng., A,
628, pp. 75-83 (2015).
21. Wei, S., Zhang, Z.H., Wang, F.C., Shen, X.B., Cai,
H.N., Lee, S.K., and Wang, L. \E ect of Ti content
and sintering temperature on the microstructures and
mechanical properties of TiB reinforced titanium composites
synthesized by SPS process", Mater. Sci. Eng.,
A, 560, pp. 249-255 (2013).
22. Tabrizi, S.G., Sajjadi, S.A., Babakhani, A., and Lu, W.
\In
uence of spark plasma sintering and subsequent
hot rolling on microstructure and
exural behavior of
in-situ TiB and TiC reinforced Ti6Al4V composite",
Mater. Sci. Eng., A, 624, pp. 271-278 (2015).
A. Sabahi Namini et al./Scientia Iranica, Transactions B: Mechanical Engineering 25 (2018) 762{771 771
23. Zhang, C.J., Kong, F.T., Xiao, S.L., Zhao, E.T., Xu,
L.J., and Chen, Y.Y. \Evolution of microstructure and
tensile properties of in situ titanium matrix composites
with volume fraction of (TiB + TiC) reinforcements",
Mater. Sci. Eng., A, 548, pp. 152-160 (2012).
24. Shen, X., Zhang, Z., Wei, S., Wang, F., and Lee, S.
\Microstructures and mechanical properties of the in
situ TiB-Ti metal-matrix composites synthesized by
spark plasma sintering process", J. Alloys Compd.,
509, pp. 7692-7696 (2011).
25. Patel, V.V., El-Desouky, A., Garay, J.E., and Morsi,
K. \Pressure-less and current-activated pressureassisted
sintering of titanium dual matrix composites:
E ect of reinforcement particle size", Mater. Sci. Eng.,
A, 507, pp. 161-166 (2009).
26. Zhang, C.J., Kong, F.T., Xu, L.J., Zhao, E.T., Xiao,
S.L., Chen, Y.Y., Deng, N.J., Geb, W., and Xu, G.J.
\Temperature dependence of tensile properties and
fracture behavior of as rolled TiB/Ti composite sheet",
Mater. Sci. Eng., A, 556, pp. 962-969 (2012).
27. Yan, Z., Chen, F., Cai, Y., and Zheng, Y. \Microstructure
and mechanical properties of in-situ synthesized
TiB whiskers reinforced titanium matrix composites by
high-velocity compaction", Powder Technol., 267, pp.
309-314 (2014).
28. Shahedi Asl, M., Sabahi Namini, A., and Ghassemi
Kakroudi, M. \In
uence of silicon carbide reinforcement
on the microstructural development of hot
pressed zirconium and titanium diborides", Ceram.
Int., 42, pp. 5375-5381 (2016).
29. Sabahi Namini, A., Seyed Gogani, S.N., Shahedi Asl,
M., Farhadi, K., Ghassemi Kakroudi, M., and Mohammadzadeh,
A. \Microstructural development and
mechanical properties of hot pressed SiC reinforced
TiB2 based composite", Int. J. Refract. Met. Hard
Mater., 51, pp. 169-179 (2015).
30. Huang, L.J., Geng, L., Peng, H.X., Balasubramaniam,
K., and Wang, G.S. \E ects of sintering parameters
on the microstructure and tensile properties of in
situ TiBw/Ti6Al4V composites with a novel network
architecture", Mater. Des., 32, pp. 3347-3353 (2011).
31. Huang, L.J., Geng, L., Wang, B., and Wu, L.Z.
\E ects of volume fraction on the microstructure and
tensile properties of in situ TiBw/Ti6Al4V composites
with novel network microstructure", Mater. Des., 45,
pp. 532-538 (2013).
32. Huang, L.J., Geng, L., Peng, H.X., and Zhang, J.
\Room temperature tensile fracture characteristics
of in situ TiBw/Ti6Al4V composites with a quasicontinuous
network architecture", Scr. Mater., 64, pp.
844-847 (2011).
33. Huang, L.J., Geng, L., Wang, B., Xu, H.Y., and
Kaveendran, B. \E ects of extrusion and heat treatment
on the microstructure and tensile properties
of in situ TiBw/Ti6Al4V composite with a network
architecture", Composites Part A, 43, pp. 486-491
(2012).
34. Zhang, C.J., Kong, F.T., Xiao, S.L., Zhao, E.T., Xu,
L.J., and Chen, Y.Y. \Evolution of microstructure and
tensile properties of in situ titanium matrix composites
with volume fraction of (TiB + TiC) reinforcements",
Mater. Sci. Eng., A, 548, pp. 152- 160 (2012).
35. Wei, S., Zhang, Z.H., Wang, F.C., Shen, X.B., Cai,
H.N., Lee, S.K., and Wang, L. \E ect of Ti content
and sintering temperature on the microstructures and
mechanical properties of TiB reinforced titanium composites
synthesized by SPS process", Mater. Sci. Eng.,
A, 560, pp. 249-255 (2013).
36. Li, B.S., Shang, J.L., Guo, J.J., and Fu, H.Z. \In situ
observation of fracture behavior of in situ TiBw/Ti
composites", Mater. Sci. Eng., A, 383, pp. 316-322
(2004).