References
1. Zhou, M., Chen, J.Y., Tang, L.D., Chen, W.Z., and
Wang, Z.B. \Ultrasound-guided high-intensity focused
ultrasound ablation for adenomyosis: the clinical experience
of a single center", Fertil. Steril., 95(3), pp.
900-905 (2011).
2. Leslie, T.A. and Kennedy, J.E. \High intensity focused
ultrasound in the treatment of abdominal and gynecological
diseases", Int. J. Hyperthermia., 23, pp. 173-
182 (2007).
3. Bailey, M.R., Khokhlova, V.A., Sapozhnikov, O.A.,
Kargl, S.G., and Crum, L.A. \Physical mechanisms
of the therapeutic eect of ultrasound", Acoust. Phys.,
49(4), pp. 369-388 (2003).
4. Hynynen, K., Chung, A.H., Colucci, V., and Jolesz,
F.A. \Potential adverse eects of high-intensity focused
ultrasound exposure on blood vessels in vivo",
Ultrasound in Medicine & Biology, 22.2, pp. 193-201
(1996).
5. Bjorno, L. \Forty years of nonlinear ultrasound",
Ultrasonics, 40, pp. 11-17 (2002).
6. Hallaj, I.M., and Cleveland, R.O. \FDTD simulation
of nite-amplitude pressure and temperature elds for
biomedical ultrasound", J. Acoust. Soc. Am., 105(5),
pp. L7-12 (1999).
7. Curra, F.P., Mourad, P.D., Khokhlova, V.A., Cleveland,
R.O., and Crum, L. A. "Numerical simulations of
heating patterns and tissue temperature response due
to high-intensity focused ultrasound", IEEE Trans.
Ultrason. Ferroelectr. Freq. Control., 47(4), pp. 1077-
1089 (2000).
8. Hariharan, P., Myers, M.R., and Banerjee, R.K.
\HIFU procedures at moderate intensities eect of
large blood vessels", Phys. Med. Biol., 52(12), pp.
3493-513 (2007).
9. Okita, K., Ono, K., Takagi, S., and Matsumoto, Y.
\Development of high intensity focused ultrasound
simulator for large-scale computing", Int. J. Numer.
Methods. Fluids., 65(1-3), pp. 43-66 (2011).
10. Wong, S.H., Kupnik, M., Butts-Pauly, K., and Khuri-
Yakub, B.T. \P1B-10 advantages of capacitive micromachined
ultrasonics transducers (CMUTs) for high
intensity focused ultrasound (HIFU)", IEEE Int. Ultrason.
Symp. (2007).
11. Hamilton, M.F., Morfey, C.L., and Blackstock, D.T.
\Model equations", Nonlinear Acoustics, 427, San
Diego: Academic press. (1998).
12. Soneson, J.E. \A parametric study of error in the
parabolic approximation of focused axisymmetric ultrasound
beams", J. E. Soneson, J. Acoust. Soc. Am.,
131(6), pp. EL481-486 (2012).
13. Tjo, J.N. and Vefring, E.H. \Eects of focusing on
the nonlinear interaction between two collinear nite
amplitude sound beams", J. Acoust. Soc. Am., 89(3),
pp. 1017-1027 (1991).
14. Tavakkoli, J., Cathignol, D., Souchon, R., and Sapozhnikov,
O.A. \Modeling of pulsed nite-amplitude focused
sound beams in time domain", J. Acoust. Soc.
Am., 104(4), pp. 2061-2072 (1998).
15. Yuldashev, P.V. and Khokhlova, V.A. \Simulation
of three-dimensional nonlinear elds of ultrasound
therapeutic arrays", Acoust. Phys., 57(3), pp. 334-343
(2011).
16. Wojcik, G., Mould, J., Abboud, N., Ostromogilsky, M.,
and Vaughan, D. \Nonlinear modeling of therapeutic
ultrasound", In Ultrasonics Symposium, Proceedings.,
IEEE, 2, pp. 1617-1622 (1995).
17. Khokhlova, V.A., Bessonova, O.V., Soneson, J.E.,
Canney, M.S., Bailey, M.R., and Crum, L.A. \Bandwidth
limitations in characterization of high intensity
S. Haddadi and M.T. Ahmadian/Scientia Iranica, Transactions B: Mechanical Engineering 25 (2018) 2087{2097 2097
focused ultrasound elds in the presence of shocks",
In K. Hynynen and J. Souquet Eds., AIP Conference
Proceedings, 1215(1), pp. 363-366, AIP (2010).
18. Joshua E. Soneson \A user-friendly software package
for HIFU simulation", AIP Conference Proceedings,
Emad S. Ebbini, Ed., 1113(1), AIP (2009).
19. Solovchuk, M., Sheu, T.W., and Thiriet, M. \Simulation
of nonlinear Westervelt equation for the investigation
of acoustic streaming and nonlinear propagation
eects", J. Acoust. Soc. Am., 134(5), pp. 3931-3942
(2013).
20. Sapareto, S.A. and Dewey, W.C. \Thermal dose determination
in cancer therapy", Int. J. Radiat. Oncol.
Biol. Phys., 10(6), pp. 787-800 (1984).
21. Karaboce, B. and Durmus, H.O. \Visual investigation
of heating eect in liver and lung induced by a
HIFU transducer", Phys. Procedia., 70, pp. 1225-1228
(2015).
22. Hynynen, K. \The threshold for thermally signicant
cavitation in dog's thigh muscle in vivo", Ultrasound
in Medicine & Biology, 17(2), pp. 157-169 (1991).
23. Clarke, R.L. and Ter Haar, G.R. \Temperature rise
recorded during lesion formation by high-intensity focused
ultrasound", Ultrasound in Medicine & Biology,
23(2), pp. 299-306 (1997).
24. Chapelon, J.Y., Prat, F., Delon, C., Margonari, J.,
Gelet, A., and Blanc, E. \Eects of cavitation in the
high intensity therapeutic ultrasound", In Ultrasonics
Symposium, Proceedings, IEEE 1991, pp. 1357-1360
(1991).
25. Chapelon, J.Y., Dupenloup, F., Cohen, H., and Lenz,
P. \Reduction of cavitation using pseudorandom signals
[therapeutic US]", IEEE Transactions on Ultrasonics,
Ferroelectrics, and Frequency Control, 43(4),
pp. 623-625 (1996).
26. Chapelon, J.Y., Cathignol, D., Cain, C., Ebbini,
E., Kluiwstra, J.U., Sapozhnikov, O.A., Fleury, G.,
Berriet, R., Chupin, L., and Guey, J.L. \New piezoelectric
transducers for therapeutic ultrasound", Ultrasound
in Medicine & Biology, 26(1), pp. 153-159
(2000).
27. Sibille, A., Prat, F., Chapelon, J.Y., et al. \Characterization
of extracorporeal ablation of normal and
tumor-bearing liver tissue by high intensity focused
ultrasound", Ultrasound in Medicine & Biology, 19(9),
pp. 803-813 (1993).