References
1. Andriolo, A., Battini, D., Grubbstrom, R.W., Persona,
A., and Sgarbossa, F. \A century of evolution from
Harris's basic lot size model: Survey and research
agenda", Int. J. Prod. Econ., 155, pp. 16-38 (2014).
2. Glock, C.H., Grosse, E.H., and Ries, J.M. \The lot
sizing problem: A tertiary study", Int. J. Prod. Econ.,
155, pp. 39-51 (2014).
3. Wagner, H.M. and Whitin, T.M. \Dynamic version of
the economic lot size model", Manage. Sci., 5(1), pp.
89-96 (1958).
4. Wagelmans, A., Van Hoesel, S., and Kolen, A. \Economic
lot sizing: an O (n log n) algorithm that runs
in linear time in the Wagner-Whitin case", Oper. Res.,
40(1-supplement-1), pp. S145-S156 (1992).
5. Karimi, B., Ghomi, S.F., and Wilson, J.M. \The
capacitated lot sizing problem: a review of models and
algorithms", OMEGA, 31(5), pp. 365-378 (2003).
6. Maes, J. and Van Wassenhove, L. \Multi-item singlelevel
capacitated dynamic lot sizing heuristics: A
general review", J. Oper. Res. Soc., 39(11), pp. 991-
1004 (1988).
7. Brahimi, N., Dauzere-Peres, S., Najid, N.M., and
Z. Chen and R.Q. Zhang/Scientia Iranica, Transactions E: Industrial Engineering 25 (2018) 2775{2787 2787
Nordli, A. \Single item lot sizing problems", Eur. J.
Oper. Res., 168(1), pp. 1-16 (2006).
8. Jans, R. and Degraeve, Z. \Meta-heuristics for dynamic
lot sizing: A review and comparison of solution
approaches", Eur. J. Oper. Res., 177(3), pp. 1855-
1875 (2007).
9. Buschkuhl, L., Sahling, F., Helber, S., and Tempelmeier,
H. \Dynamic capacitated lot sizing problems:
a classication and review of solution approaches",
Or Spectrum, 32(2), pp. 231-261 (2010).
10. Aksen D., Altnkemer K., and Chand S. \The singleitem
lot sizing problem with immediate lost sales",
Eur. J. Oper. Res., 147(3), pp. 558-566 (2003).
11. Aksen, D. \Loss of customer goodwill in the uncapacitated
lot sizing problem", Comp. Oper. Res., 34(9),
pp. 2805-2823 (2007).
12. Absi N., Detienne B., and Dauzere-Peres S. \Heuristics
for the multi-item capacitated lot sizing problem with
lost sales", Comput. Oper. Res., 40(1), pp. 264-272
(2013).
13. Sereshti, N. and Bijari, M. \Prot maximization in
simultaneous lot sizing and scheduling problem", Appl.
Math. Model., 37(23), pp. 9516-9523 (2013).
14. Coughtrie, D., Morley J., andWard, T. \Restructuring
in bankruptcy: recent national case examples" (2009).
https://www.eurofound.europa.eu/sites/default/les/
ef les/docs/erm/tn0908026s/tn0908026s.pdf/
15. Elston J.A. and Audretsch D.B. \Financing the entrepreneurial
decision: An empirical approach using
experimental data on risk attitudes", Small. Bus.
Econ., 36(2), pp. 209-222 (2011).
16. ACCA and IMA. \Surviving the recession and the
recovery: the SME story" (2013).
http://www.accaglobal.com/content/dam/acca/global/
PDF-technical/small-business/pol-tp-stra.pdf
17. Cu~nat, V. and Garcia-Appendini, E. \Trade credit and
its role in entrepreneurial nance", In Oxford Handbook
of Entrepreneurial Finance, Douglas C., Ed., pp. 526-
557, Oxford University Press, New York, USA (2012).
18. Fitzpatrick, A. and Lien, B. \The use of trade credit
by businesses", RBA Bulletin, pp. 39-46 (2013).
19. Goyal S.K. \Economic order quantity under conditions
of permissible delay in payments", J. Oper. Res. Soc.,
36(4), pp. 335-338 (1985).
20. Chang, C.T., Teng, J.T., and Goyal, S.K. \Inventory
lot-size models under trade credits: a review", A. Pac.
J. Oper. Res., 25(01), pp. 89-112 (2008).
21. Teng, J.T., Min, J., and Pan, Q. \Economic order
quantity model with trade credit nancing for nondecreasing
demand", OMEGA, 40(3), pp. 328-335
(2012).
22. Liao, J.J., Huang, K.N., and Chung, K.J. \Lot sizing
decisions for deteriorating items with two warehouses
under an order-size-dependent trade credit", Int. J.
Prod. Econ., 137(1), pp. 102-115 (2012).
23. Jaggi, C.K., Yadavalli, V.S.S., Verma, M., and
Sharma, A. \An EOQ model with allowable shortage
under trade credit in dierent scenario", App. Math.
Comput., 252, pp. 541-551 (2015).
24. Ouyang, L.Y., Ho, C.H., Su, C.H., and Yang, C.T. \An
integrated inventory model with capacity constraint
and order-size dependent trade credit", Comput. Ind.
Eng., 84, pp. 133-143 (2015).
25. Yadav, D., Singh, S.R., and Kumari, R. \Retailer's
optimal policy under in
ation in fuzzy environment
with trade credit", Int. J. Syst. Sci., 46(4), pp. 754-762
(2015).
26. Zhou, Y.W., Zhong, Y., and Li, J. \An uncooperative
order model for items with trade credit, inventorydependent
demand and limited displayed-shelf space",
Eur. J. Oper. Res., 223(1), pp. 76-85 (2012).
27. Seifert, D., Seifert, R.W., and Protopappa-Sieke, M.
\A review of trade credit literature: Opportunities for
research in operations", Eur. J. Oper. Res., 231(2),
pp. 245-256 (2013).
28. Bitran, G.R. and Yanasse, H.H. \Computational complexity
of the capacitated lot size problem", Manage.
Sci., 28(10), pp. 1174-1186 (1982).
29. Potra, F.A. andWright, S.J. \Interior-point methods",
J. Comput. Appl. Math., 124(1), pp. 281-302 (2000).
30. Zhang, Y. \Solving large-scale linear programs by
interior-point methods under the Matlab* environment",
Optim. Methods. Softw., 10(1), pp. 1-31 (1988).