References
1. Tone, K. and Tsutsui, M. \Network DEA: A slacksbased measure approach", Eur. J. Oper. Res., 197(1), pp. 243-252 (2009).
2. Sexton, T.R. and Lewis, H.F. \Two-stage DEA: An application to major league baseball", J. Prod. Anal. 19(2), pp. 227-249 (2003).
3. Despotis, D.K. and Koronakos, G. \Eciency assessment
in two-stage processes: A novel network DEA
Approach", Pro. Computer Science, 31, pp. 299-307
(2014).
4. Carayannis, E.G., Goletsis, Y. and Grigoroudis, E.
\Multi-level multi-stage eciency measurement: the
case of innovation systems", Oper. Res., 15(2) pp. 253-
274 (2015).
5. Jarosz, P., Kusiak, J., MaBecki, S.B., Oprocha, P.,
Sztangret, A. and Wilkus, M.A. \Methodology for
optimization in multistage industrial processes: A
Pilot Study", Math. Prob. Eng., 2015, pp. 1-10 (2015).
6. Gang, D., Li, C., Yin-Zhen, L. and Jie-Yan, S.A. \Tanweer,
optimization on production-inventory problem
with multistage and varying demand", J. Appl. Math.,
2012, pp. 1-17 (2012).
7. Charnes, A., Cooper, W.W. and Rhodes, E. \Measuring
the eciency of decision making units", Eur. J.
Oper. Res., 2(6), pp. 429-444 (1978).
8. Banke, R., Charnes, A. and Cooper, W.W. \Some
models for estimating technical and scale ineciencies
in data envelopment analysis", Manag. Sci., 30(9), pp.
1078-1092 (1984).
9. Cheng, H., Zhang, Y., Cai, J. and Huang, W. \A
multiobjective programming method for ranking all
units based on compensatory DEA model", Math.
Prob. Eng., 2014, pp. 1-14. (2014).
10. Kao, H.Y., Chan, C.Y. and Wu, D.J. \A multiobjective
programming method for solving network
DEA", Appl. Soft Comput., 24(2014), pp. 406-413
(2014).
11. Kazemi Matin, R. and Azizi, R. \A unied network-
DEA model for performance measurement of production
systems", Measurement., 60, pp. 186-193 (2015).
12. Wang, W.K., Lu, W.M. and Liu, P.Y. \A fuzzy multiobjective
two-stage DEA model for evaluating the
K. Kianfar et al./Scientia Iranica, Transactions E: Industrial Engineering 25 (2018) 398{409 409
performance of US bank holding companies", Expert.
Syst. Appl., 41(9), pp. 4290-4297 (2014).
13. Dimitris, K. and Despotis, G.K. \Eciency assessment
in two-stage processes: A novel network DEA
approach", Procedia. Comput. Sci., 31, pp. 299-307
(2014).
14. Halkos, G.E., Tzeremes, N.G. and Kourtzidis, S.A. \A
unied classication of two-stage DEA models", Sur.
Oper. Res. Manag. Sci., 19(1), pp. 1-16 (2014).
15. Lee, E.S. and Li, R.J. \Fuzzy multiple objective programming
and compromise programming with Pareto
optimum", Fuzzy Set. Syst., 53(3), pp. 275-288 (1993).
16. Izadikhah, M. and Farzipoor Saen, R. \Evaluating
sustainability of supply chains by two-stage range
directional measure in the presence of negative data",
Trans. Res. Part D., 49, pp. 110-126 (2016).
17. Olfata, L., Amiri, M., Sou, J.B. and Pishdar, M. \A
dynamic network eciency measurement of airports
performance considering sustainable development concept:
A fuzzy dynamic network-DEA approach", J.
Air. Trans. Manag., 57, pp. 272-290 (2016).
18. Chen, Y. and Zhu, J. \Measuring information technology's
indirect impact on rm performance", Inform.
Tech. Manag. J., 5(1-2) pp. 9-22 (2004).
19. Tone, K. and Tsutsui, M. \Network DEA: a slacksbased
measure approach", Eur. J.Oper. Res 197, pp.
243-252 (2009).