An effcient observer design method for singular discrete-time systems with time delays and nonlinearity: LMI approach

Document Type : Article

Authors

Department of Electrical Engineering, University of Zanjan, Zanjan, Iran.

Abstract

In this paper, the observer design method for linear and nonlinear singular discrete-time systems with constant time-delays is proposed. By constructing appropriate Lyapunov–Krasovskii functional and using linear matrix inequality (LMI) technique, the asymptotic convergence criterion is developed in terms of LMIs, which can be solved numerically using MATLAB® LMI® toolbox. The sufficient condition for the existence of a full-order observer is obtained and the states are estimated using Schur complement and S-procedure lemma very well. Moreover, an extension procedure for observer design of singular linear system with time-varying delay is presented. Simulation results are included to prove the efficiency of the suggested approach.

Keywords

Main Subjects


Refrences:
1.Zhai, D., Zhang, Q.L., and Li, J.H. Fault detection for singular multiple time-delay systems with application to electrical circuit", J. Franklin Inst., 351, pp. 5411- 5436 (2014).
2. Shengyuan, X., Dooren-Paul, V., Radu, S., and Lam, J. Robust stability and stabilization for singular systems with state delay and parameter uncertainty", IEEE Trans. Automat. Control, 47, pp. 1122-1128 (2002).
3. Lin, J.L., and Chen, S.J. Robustness analysis of uncertain linear singular systems with output feedback control", IEEE Trans. Automat. Control, 40, pp. 1924- 1929 (1999). 4. Zhao, F., Zhang, Q., and Zhang, Y. H1 _ltering for a class of singular biological systems", IET Control Theory Appl., 9, pp. 2047-2055 (2015). 5. Zerrougui, M., Darouach, M., Boutat-Baddas, L., and Ali, H.S. H1 _ltering for singular bilinear systems with application to a single-link exible-joint robot", Int. J. Control Autom. Syst., 12, pp. 590-598 (2014). 6. Balaji, S. A new Bernoulli wavelet operational matrix of derivative method for the solution of nonlinear singular Lane-Emden type equations arising in astrophysics", J. Comput. Nonlinear Dynam., 11(5), 051013-11 (2016). 7. Lin, D., Lan, W., and Li, M. Composite nonlinear feedback control for linear singular systems with input saturation", Syst. Control Lett., 60, pp. 825-831 (2011). 1698 R. Hajmohammadi and S. Mobayen/Scientia Iranica, Transactions D: Computer Science & ... 26 (2019) 1690{1699 8. Ma, S., Zhang, C., and Cheng, Z. Delay-dependent robust H1 control for uncertain discrete-time singular systems with time-delays", J. Comput. Appl. Math., 217(1), pp. 194-211 (2008). 9. Khandani, K., Majd, V.J., and Tahmasebi, M. Integral sliding mode control for robust stabilisation of uncertain stochastic time-delay systems driven by fractional Brownian motion", Int. J. Syst. Sci., 48(4), pp. 828-837 (2017). 10. Mohan, B.M. and Kar, S.K. Optimal control of singular systems via orthogonal functions", Int. J. Control Autom. Syst., 9(1), pp. 145-150 (2011). 11. Shi, S., Zhang, Q., Yuan, Z., and Liu, W. Hybrid impulsive control for switched singular systems", IET Control Theory Appl., 5(1), pp. 103-111 (2011). 12. Li, J.N., Su, H., Zhang, Y., Wu, Z.G., and Chu, J. Chattering free sliding mode control for uncertain discrete time-delay singular systems", Asian J. Control, 15(1), pp. 260-269 (2013). 13. Li, Q., Zhang, Q., Yi, N., and Yuan, Y. Robust passive control for uncertain time-delay singular systems", IEEE Trans. Circuit. Syst. I Reg. Paper, 56(3), pp. 653-663 (2009). 14. Zuo, Z., Ho, D.W., and Wang, Y. Fault tolerant control for singular systems with actuator saturation and nonlinear perturbation", Automatica, 46(3), pp. 569-576 (2010). 15. Feng, Y. and Yagoubi, M. On state feedback H1 control for discrete-time singular systems", IEEE Trans. Automat. Control, 58(10), pp. 2674-2679 (2013). 16. Ma, Y. and Fu, L. H1 robust exponential stability and memory state feedback control for uncertain singular time-delay systems with saturating actuators", IET Control Theory Appl., 10(3), pp. 328-338 (2016). 17. Liu, P., Song, H., and Li, X. Observe-based projective synchronization of chaotic complex modi_ed Van Der Pol-Du_ng oscillator with application to secure communication", J. Comput. Nonlinear Dynam., 10(5), 051015-7 (2015). 18. Zhang, Y. and Sinha, S.C. Observer design for nonlinear systems with time-periodic coe_cients via normal form theory", J. Comput. Nonlinear Dynam., 4(3), 031001-10 (2009). 19. Zhang, Y., Cheng, W., Mu, X., and Guo, X. Observer-based _nite-time control of singular Markovian jump systems", J. Appl. Math., 2012, 19 pages (2012). 20. Deutscher, J. Output regulation for linear singular systems using dual-observer based compensators", Int. J. Control, 86(5), pp. 934-941 (2013). 21. Kchaou, M., Gassara, H., and El-Hajjaji, A. Robust observer-based control design for uncertain singular systems with time-delay", Int. J. Adapt. Control Signal Process., 28(2), pp. 169-183 (2014). 22. Hassan, L., Zemouche, A., and Boutayeb, M. Robust observer and observer-based controller for time-delay singular systems", Asian J. Control, 16(1), pp. 80-94 (2014). 23. Yao, X., Zhu, L., and Guo, L. Disturbance-observerbased control & H1 control for non-linear Markovian jump singular systems with multiple disturbances", IET Control Theory Appl., 8(16), pp. 1689-1697 (2014). 24. Ma, Y. and Yan, Y. Observer-based H1 control for uncertain singular time-delay systems with actuator saturation", Optim. Control Appl. Method., 37(5), pp. 867-884 (2016). 25. Osorio-Gordillo, G.L., Darouach, M., Boutat-Baddas, L., and Astorga-Zaragoza, C.M. Dynamical observerbased fault detection and isolation for linear singular systems", Syst. Sci. Control Eng., 3(1), pp. 189-197 (2015). 26. Kao, Y., Xie, J., Wang, C., and Karimi, H.R. Observer-based H1 sliding mode controller design for uncertain stochastic singular time-delay systems", Circuit. Syst. Signal Process., 35(1), pp. 63-77 (2016). 27. Nguyen, M.C., Trinh, H., and Nam, P.T. Nonlinear observer design for a class of singular timedelay systems with Lipschitz non-linearities", IMA J. Math. Control Inform, 34(3), pp. 919-935 (2017). DOI: 10.1093/imamci/dnw006 28. Lin, Y. Observer design for rectangular discrete-time singular systems with time-varying delay", Int. J. Phys. Sci., 7(3), pp. 423-431 (2012). 29. Zhang, Y., Shi, P., and Nguang, S.K. Observer-based _nite-time H1 control for discrete singular stochastic systems", Appl. Math. Lett., 38, pp. 115-121 (2014). 30. Kchaou, M., Tadeo, F., Chaabane, M., and Toumi, A. Delay-dependent robust observer-based control for discrete-time uncertain singular systems with interval time-varying state delay", Int. J. Control Automat. Syst., 12(1), pp. 12-22 (2014). 31. Lin, J., Shi, Y., Gao, Z., and Ding, J. Functional observer for switched discrete-time singular systems with time-delays and unknown inputs", IET Control Theory Appl., 9(14), pp. 2146-2156 (2015). 32. Dai, L. Singular control systems", Lecture Notes in Control and Information Sciences, Springer (1989). 33. Wang, Z., Shen, Y., Zhang, X., and Wang, Q. Observer design for discrete-time descriptor systems: An LMI approach", Syst. Control Lett., 61, pp. 683-687 (2012). 34. Darouach, M. and Boutayeb, M. Design of observers for descriptor systems", IEEE Trans. Autom. Control, 40, pp. 1323-1327 (1995). 35. Koenig, D. Observer design for unknown input nonlinear descriptor systems via convex optimization", IEEE Trans. Autom. Control, 51, pp. 1047-1052 (2006). 36. Scherer, C. and Weiland, S. Linear matrix inequalities in control", Lecture Notes, Delft University, The Netherlands (2005). R. Hajmohammadi and S. Mobayen/Scientia Iranica, Transactions D: Computer Science & ... 26 (2019) 1690{1699 1699 37. Mobayen, S. and Tchier, F. An LMI approach to adaptive robust tracker design for uncertain nonlinear systems with time-delays and input nonlinearities", Nonlinear Dyn., 85(3), pp. 1965-1978 (2016). 38. Mobayen, S. and Tchier, F. A new LMI-based robust _nite-time sliding mode control strategy for a class of uncertain nonlinear systems", Kybernetika, 51(6), pp. 1035-1048 (2015). 39. Rehan, M., Hong, K.S., and Ge, S.S. Stabilization and tracking control for a class of nonlinear systems", Nonlinear Anal. Real World Appl., 12, pp. 1786-1796 (2011). 40. Wang, D., Song, F., and Zhang, W. State estimation for discrete-time systems with generalized Lipschitz nonlinear dynamics", Adv. Di_er. Eq., 2015(1), p. 307 (2015). 41. Mobayen, S. and Tchier, F. Synchronization of a class of uncertain chaotic systems with Lipschitz nonlinearities using state-Feedback control design: a matrix inequality approach", Asian J. Control, 20(1), pp. 71- 85 (2018). 42. Wu, H.N. Delay-dependent stability analysis and stabilization for discrete-time fuzzy systems with state delays: a fuzzy Lyapunov-Krsovskii functional approach", IEEE Trans. Syst. Man Cybern. B Cybern., 36(4), pp. 954-962 (2006). 43. Mobayen, S. Optimal LMI-based state feedback stabilizer for uncertain nonlinear systems with time-varying uncertainties and disturbances", Complexity, 21(6), pp. 356-362 (2016). 44. Mobayen, S. An LMI-based robust tracker for uncertain linear systems with multiple time-varying delays using optimal composite nonlinear feedback technique", Nonlinear Dyn., 80(1-2), pp. 927-917 (2015). 45. Khalil, H.K. and Grizzle, J.W., Nonlinear Systems, New Jersey: Prentice Hall (1996).
Volume 26, Issue 3
Transactions on Computer Science & Engineering and Electrical Engineering (D)
May and June 2019
Pages 1690-1699
  • Receive Date: 28 November 2016
  • Revise Date: 18 March 2017
  • Accept Date: 19 June 2017