Optimization of Radiation Characteristic of Time Modulated Circular Geometry Using DEWM

Document Type : Article


1 Department of ECE, Madanpalle Institute of technology and Science, India

2 Department of Electrical Engineering, National Institute of Technology Durgapur, India


In this paper differential evolution with wavelet mutation (DEWM) is applied for the radiation pattern synthesis for circular geometry of antenna array. Two circular geometries have been considered namely; (a) time modulated half symmetric circular array (TMHSCAA) and (b) 9-ring time modulated concentric circular antenna array (TMCCAA). DEWM algorithm is applied to show the performance improvement for the optimal design of TMHSCAA and TMCCAA.  While doing so various other stochastic algorithms like real coded genetic algorithm (RGA), particle swarm optimization (PSO), and differential evolution (DE) are also used for the sake of comparison to establish the superiority of DEWM. For TMHSCAA, elements are symmetrical around to the vertical axis, so the number of parameters to be optimized is reduced, with two control parameters like switching excitation phase of each element. For TMCCAA, two proportional case studies as Case-1 and Case-2 are carried out with different variable parameters. The simulation outcomes show the supremacy of DEWM to be a plausible claimant for scheming the best TMHSCAA and TMCCAA. The simulation tests have also been performed with 20- and 36- element TMHSCAA and 9 rings TMCCAA.  


Main Subjects

1. Ballanis, A., Antenna Theory Analysis and Design,
2nd Ed., John Willey and Son's Inc., New York (1997).
2. Elliott, R.S., Antenna Theory and Design, Revised
edition, John Wiley, New Jersey (2003).
3. Shanks, H.E. and Bickmore, R.W. \Four-dimensional
electromagnetic radiators", Canad. J. Phys., 37, pp.
263-275 (Mar. 1959).
4. Kummer, W.H., Villeneuve, A.T., Fong, T.S., et al.
\Ultra-low sidelobes from time-modulated arrays [J]",
IEEE Trans. Antennas Propagat., 11(5), pp. 633-639
5. Lewis, B.L. and Evins, J.B. \A new technique for reducing
radar response to signals entering antenna sidelobes
[J]", IEEE Trans. Antennas Propagat., 31(6), pp.
993-996 (1983).
6. Yang, S., Gan, Y.B., and Qing, A. \Sideband suppression
in time modulated linear arrays by the di erential
evolution algorithm", IEEE Antennas Wirel. Propag.
Lett., 1, pp. 173-175 (2002).
7. Yang, S., Gan, Y.B., and Tan, P.K. \A new technique
for power-pattern synthesis in time-modulated linear
arrays", IEEE Antennas Wirel. Propag. Lett., 2, pp.
285-287 (2003).
8. Fondevila, J., Bregains, J.C., Ares, F., and Moreno,
E. \Optimizing uniformly excited arrays through time
modulation", IEEE Antennas Wirel. Propag. Lett., 3,
pp. 298-301 (2004).
9. Yang, S., Gan, Y.B., Qing, A., and Tan, P.K. \Design
of a uniform amplitude time modulated linear array
with optimized time sequences", IEEE Trans. Antennas
Propag., 53(7), pp. 2337-2339 (2005).
10. Yang, S., Gan, Y.B., and Qing, A. \Antenna array pattern
nulling using a di erential evolution algorithm",
Int. J. RF Microwave Computer-Aided Eng., 14, pp.
57-63 (January 2004).
11. Zhu, Q., Yang, S., and Zheng, L. \Design of a low
sidelobe time modulated linear array with uniform
amplitude and sub-sectional optimized time steps",
IEEE Transactions on Antennas and Propagation,
60(9), pp. 4436-4439 (2012).
12. Yang, S., Beng, Y., and Tan, P.K. \Evaluation of
directivity and gain for time-modulated linear antenna
arrays", Microwave and Optical Technology Letters,
42(2), pp. 167-171 (July 2004).
13. Munson, D.C., Brian, J.D.O., and Jenkins, W.K. \A
tomographic formulation of spot-light mode synthetic
aperture radar", Proc. IEEE, 71, pp. 917-925 (August
14. Compton, R.T. \An adaptive array in a spreadspectrum
communication system", Proc. IEEE, 66,
pp. 289-298 (March 1978).
15. Kak, A.C., Array Signal Processing, S. Haykin, Ed.,
Prentice- Hall, Englewood Cli s, NJ (1985).
16. Panduro, M.A., Mendez, A.L., Dominguez, R. and
Romero, G. \Design of non-uniform circular antenna
arrays for side lobe reduction using the method of genetic
algorithms", Int. 1. Electron. Commun. (AEU),
60, pp. 713-717 (2006).
17. Rooeinfar, R., Azimi, P., and Pourvaziri, H. \Multiechelon
supply chain network modelling and optimization
via simulation and metaheuristic algorithms",
Scientia Iranica, 23(1), pp. 330-347 (2016).
18. Panduro, M.A., Brizuela, C.A., Balderas, L.I., and
Acosta, D.A. \A comparison of genetic algorithms,
particle swarm optimization and the di erential evolution
method for the design of scannable circular antenna
arrays", Progress in Electromagnetics Research
B, 13, pp. 171-186 (2009).
19. Shihab, M., Najjar, Y., Dib, N., and Khodier, M.
\Design of non-uniform circular antenna arrays using
particle swarm optimization", Journal of Electrical
Engineering, 59(4), pp. 216-220 (2008).
20. Ram, G., Mandal, D., Kar, R., and Ghoshal,
S.P. \Directivity improvement and optimal far
1580 G. Ram et al./Scientia Iranica, Transactions D: Computer Science & ... 25 (2018) 1571{1581
eld pattern of time modulated concentric circular
antenna array using hybrid evolutionary algorithms",
International Journal of Microwave and
Wireless Technologies, Cambridge University Press,
9(1), pp.1-14 (June 2015). DOI: http://dx.doi.org/10.
21. Huang, M., Yang, S., Li, G., and Nie, Z. \Synthesis
of low and equal-ripple sidelobe patterns in timemodulated
circular antenna arrays", J. Infrared Milli
Terahz Waves, 30, pp. 802-812 (2009).
22. Zheng, L., Yang, S., Zhu, Q., and Nie, Z. \Synthesis of
pencil-beam patterns with time-modulated concentric
circular ring antenna arrays", PIERS Proceedings, pp.
372-376, September, Suzhou, China (2011).
23. Mandai, D., Ghoshal, S.P., and Bhattacharjee, A.K.,
\Design of concentric circular antenna array with
central element feeding using particle swarm optimization
with constriction factor and inertia weight
approach and evolutionary programing technique",
Journal of Infrared Milli Terahz Waves, 31(6), pp. 667-
680 (2010).
24. Mandai, D., Ghoshal, S.P., and Bhattacharjee, A.K.
\Radiation pattern optimization for concentric circular
antenna array with central element feeding using
craziness based particle swarm optimization", International
Journal of RF and Microwave Computer-Aided
Engineering, 20(5), pp. 577-586 (September 2010).
25. Ram, G., Mandal, D., Kar, R., and Ghoshal, S.P.
\Opposition-based gravitational search algorithm for
synthesis circular and concentric circular antenna arrays",
Scientia Iranica, Transactions D, Computer
Science & Engineering, Electrical, 22(6), p. 2457
26. Luo, Z., He, X., Chen, X., et al. \Synthesis of thinned
concentric circular antenna arrays using modi ed
TLBO algorithm", International Journal of Antennas
and Propagation (2015).
27. Singh, U., Salgotra, R., and Rattan, M. \A novel
binary spider monkey optimization algorithm for thinning
of concentric circular antenna arrays", IETE
Journal of Research, pp. 1-9 (2016).
28. Das, R. \Concentric ring array", IEEE Trans. Antennas
Propag., 14(3), pp. 398-400 (May 1966).
29. Haupt, R.L. \Optimized element spacing for low sidelobe
concentric ring arrays", IEEE Trans. Antennas
Propag., 56(1), pp. 266-268 (January 2008).
30. Stearns, C. and Stewart, A. \An investigation of
concentric ring antennas with low sidelobes", IEEE
Trans. Antennas Propag., 13(6), pp. 856-863 (November
31. Goto, N. and Cheng, D.K. \On the synthesis of
concentric-ring arrays", IEEE Proc., 58(5), pp. 839-
840 (May 1970).
32. Huebner, M.D.A. \Design and optimization of small
concentric ring arrays", In ProG. IEEE AP-S Symp.,
pp. 455-45 (1978).
33. Holtrup, M.G., Margulnaud, A., and Citerns, J. \Synthesis
of electronically steerable antenna arrays with
element on concentric rings with reduced sidelobes",
In Proc. IEEE AP-S Symp., pp. 800-803 (2001).
34. Dessouky, M., Sharshar, H., and Albagory, Y. \E-
cient sidelobe reduction technique for small-sized concentric
circular arrays", Progress in Electromagnetics
Research, PIER 65, pp. 187-200 (2006).
35. Kaveh, A. and Shokohi, F. \A hybrid optimization
algorithm for the optimal design of laterally-supported
castellated beams", Scientia Iranica, Transactions A,
Civil Engineering, 23(2), p. 508 (2016).
36. Siddique, N. and Adeli, H. \Central force metaheuristic
optimisation", Scientia Iranica, Transactions A,
Civil Engineering, 22(6) (1941), pp. 1941-1953 (2015).
37. Jolai, F., Reza, T.M., Rabiee, M., et al. \An enhanced
invasive weed optimization for makespan minimization
in a
owshop scheduling problem", Scientia
Iranica, Transactions E, Industrial Engineering,
21(3), p. 1007 (2014).
38. Kaveh, A.A. and Nasrollahi, A. \Charged system
search and particle swarm optimization hybridized for
optimal design of engineering structures", Sci. Iran.
Trans. A, Civil Eng., 21(2), p. 295 (2014).
39. Hajipour, V., Mehdizadeh, E., and Tavakkoli-
Moghaddam, R. \A novel pareto-based multi-objective
vibration damping optimization algorithm to solve
multi-objective optimization problems", Scientia Iranica,
Transactions E, Industrial Engineering, 21(6), p.
2368 (2014).
40. Esmaeili, M., Zakeri, J.A., Kaveh, A., et al. \Designing
granular layers for railway tracks using ray optimization
algorithm", Scientia Iranica, Transactions A,
Civil Engineering, 22(1), p. 47 (2015).
41. Pourbakhshian, S., Ghaemian, M., and Joghataie, A.
\Shape optimization of concrete arch dams considering
stage construction", Scientia Iranica. Transactions A,
Civil Engineering, 23(1), p. 21 (2016).
42. Ram, G., Mandal, D., Kar, R., and Ghoshal, S.P.
\Directivity maximization and optimal far- eld pattern
of time modulated linear antenna arrays using
evolutionary algorithms", AEU-International Journal
of Electronics and Communications, 69(12), pp. 1800-
1809 (2015).