References
1. Gad-el-Hak, M., The MEMS Handbook, CRC Press (2001).
2. Oron, A., Davis, S.H. and Banko, S.G. \Long-scale
evolution of thin liquid lms", Rev. Modern Phys., 68,
pp. 931-980 (1997).
3. Yiantsios, S.G. and Higgins, B.G. \Rayleigh-Taylor
instability in thin viscous lms", Phys. Fluids, 1, pp.
1484-1501 (1989).
4. Yiantsios, S.G. and Higgins, B.G. \Rapture of thin
lms: nonlinear stability analysis", J. Colloid Interface
Sci., 147, pp. 341-350 (1991).
5. Oron, A. and Rosenau, P. \Formation of patterns
induced by thermocapillarity and gravity", J. Phy.
(France), 2, pp. 131-146 (1992).
6. Fermigier, M., Limat, L., Wesfreid, J.E., Boudient,
P. and Quilliet, C. \Two-dimensional patterns in
Rayleigh-Taylor instability of a thin layer", J. Fluid
Mech., 236, pp. 349-383 (1992).
7. Ruyer-Quil, C. and Manneville, P. \Improved modeling
of
ows down inclined planes", Eur. Phys. J. B,
15, pp. 357-369 (2000).
8. Houseman, G.A. and Molnar, P. \Gravitational
(Rayleigh-Taylor) instability of a layer with non-linear
viscosity and convective thinning of continental lithosphere",
Int. J. Geophys., 128, pp. 125-150 (1997).
278 R. Nasehi and E. Shirani/Scientia Iranica, Transactions B: Mechanical Engineering 25 (2018) 266{279
9. Fomin, S., Watterson, J. and Raghunathan, S. \The
run-o condition for rimming
ow of a power-law
uid", Theoret. Comput. Fluid Dynamics, 15, pp. 83-
94 (2001).
10. Perazzo, C.A. and Gratton, J. \Thin lm of non-
Newtonian
uid on an incline", Phusical Review, 67,
pp. 1-6 (2003).
11. Perazzo, C.A. and Gratton, J. \Steady and traveling
ows of a power-law liquid over an incline", J. Non-
Newtonian Fluid Mech., 118, pp. 57-64 (2004).
12. Balmforth, N., Ghadge, Sh. and Myers, T. \Surface
tension driven ngering of a viscoplastic lm", J. Non-
Newtonian Fluid Mech., 142, pp. 143-149 (2007).
13. Miladinova, S., Lebon, G. and Toshev, E. \Thin-lm
ow of a power-law liquid falling down an inclined
plate", J. Non-Newtonian Fluid Mech., 122, pp. 69-
78 (2004).
14. Myers, T.G. \Application of non-Newtonian models to
thin lm
ow", Physical Review, 72, pp. 1-11 (2005).
15. Perazzo, C.A. and Gratton, J. \Exact solutions for
two-dimensional steady
ows of a power-law liquid on
an incline", Phys. Fluids, 17, pp. 1-8 (2005).
16. Heining, C. and Aksel, N. \Eects of inertia and
surface tension on a power-law
uid
owing down a
wavy incline", Int. J. Multiphase Flow, 36, pp. 847-
857 (2010).
17. Hu, B. and Kieweg, S.L. \The eect of surface tension
on the gravity-driven thin lm
ow of Newtonian and
power-law
uids", Computers & Fluids, 64, pp. 83-90
(2012).