References
1. Bazhlekova, E. \Fractional evolution equations in Banach spaces", PhD. Thesis, Eindhoven University of
Technology (2001).
2. Hilfer, R. and Seybold, H. \Computation of the generalized Mittag-Leer function and its inverse in
the complex plane", Integral Transforms and Special Functions, 17(9), pp. 637-652 (2006).
3. Kilbas, A., Srivastava, H. and Trujillo, J. Theory and Applications of Fractional Dierential Equations,
North Holland Mathematics Studies, 204, Elsevier Science B.V., Amsterdam (2006).
4. Lizama, C. and N'Guerekata, G. \Mild solutions for
abstract fractional dierential equations", Appl. Anal.,
98(3), pp. 1731-1754 (2013).
5. Lizama, C. \Regularized solutions for abstract
Volterra equations", J. Math. Anal. Appl., 243, pp.
278-292 (2000).
6. Karczewska, A. and Lizama, C. \Solutions to stochastic
fractional relaxation equations", Physica Scripta T,
136, pp. 1-7 (2009).
7. Erdelyi, A., Magnus, W., Oberhettinger, F. and
Tricomi, F., Higher Transcendental Functions, 2,
McGraw-Hill, New York (1953).
8. Henrquez, H., Cuevas, C. and Caicedo, A. \Asymptotically
periodic solutions of neutral partial dierential
equations with innite delay", Commun. Pure Appl.
Anal., 12(5), pp. 2031-2068 (2013).
9. Henrquez, H., Pierri, M. and Taboas, P. \On Sasymptotically
!-periodic functions on Banach spaces
and applications", J. Math. Anal. Appl., 343(2), pp.
1119-1130 (2008).
10. Pierri, M. and Rolnik, V. \On pseudo S-asymptotically
!-periodic functions", Bull. Aust. Math. Soc., 87(2),
pp. 238-254 (2013).
11. Cuevas, C., Henrquez, H. and Soto, H. \Asymptotically
periodic solutions of fractional dierential
equations", Appl. Math. Comput., 236, pp. 524-545
(2014).
338 A. Aparcana et al./Scientia Iranica, Transactions B: Mechanical Engineering 25 (2018) 329{338
12. De Andrade, B., Cuevas, C., Silva, C. and Soto, H.
\Asymptotic periodicity for
exible structural systems
and applications", Acta Appl. Math., 143, pp. 105-164
(2016).
13. Andrade, F., Cuevas, C., Silva, C. and Soto, H.
\Asymptotic periodicity for hyperbolic evolution equations
and applications", Appl. Math. Comput., 269,
pp. 169-195 (2015).
14. Cuevas, C. and Lizama, C. \S-asymptotically !-
periodic solutions for semilinear Volterra equations",
Math. Meth. Appl. Sci., 33, pp. 1628-1636 (2010).
15. Miller, R.K., Nonlinear Volterra Integral Equations,
W.A. Benjamin, Inc., California (1971).
16. De Andrade, B., Cuevas, C. and Henrquez, E.
\Asymptotic periodicity and almost automorphy for a
class of Volterra integro-dierential equations", Math.
Meth. Appl. Sci., 35, pp. 795-811 (2012).
17. Henrquez, H., Poblete, V. and Pozo, J. \Mild solutions
of non-autonomous second order problems with
nonlocal initial conditions", J. Math. Anal. Appl., 412,
pp. 1064-1083 (2014).