References
1. Jategaonkar, R. and Chehil, D.S. Natural frequencies
of a beam with varying section properties", J. Sound
Vib., 133(2), pp. 303-322 (1989).
2. Katsikadelis, J.T. and Tsiatas, G.C. Non-linear dynamic
analysis of beams with variable stiness", J.
Sound Vib., 270(4-5), pp. 847-863 (2004).
3. Nikkhah Bahrami, M., Khoshbayani Arani, M., and
Rasekh Saleh, N. Modied wave approach for calculation
of natural frequencies and mode shapes in
arbitrary non-uniform beams", Sci. Iran., B, 18(5),
pp. 1088-1094 (2011).
4. Huang, Y. and Li, X-F. A new approach for free
vibration of axially functionally graded beams with
non-uniform cross-section", J. Sound Vib., 329(11),
pp. 2291-2303 (2010).
5. Au, F.T.K., Zheng, D.Y., and Cheung, Y.K. Vibration
and stability of non-uniform beams with abrupt
2978 S.E. Motaghian et al./Scientia Iranica, Transactions A: Civil Engineering 25 (2018) 2967{2979
changes of cross-section by using modied beam vibration
functions", Appl. Math. Model., 29(1), pp. 19-34
(1999).
6. Naguleswaran, S. vibration of an Euler-Bernoulli
beam of constant depth and with linearly varying
breadth", J. Sound Vib., 153(3), pp. 509-522 (1992).
7. Firouz-Abadi, R.D., Haddadpoura, H., and Novinzadehb,
A.B. An asymptotic solution to transverse
free vibrations of variable-section beams", J. Sound
Vib., 304(3-5), pp. 530-54 (2007).
8. Datta, A.K. and Sil, S.N. An analytical of free undamped
vibration of beams of varying cross-section",
Comput. Struct., 59(3), pp. 479-483 (1996).
9. Banerjee, J.R., Su, H., and Jackson, D.R. Free
vibration of rotating tapered beams using the dynamic
stiness method", J. Sound Vib., 298(4-5), pp. 1034-
1054 (2006).
10. Caruntu, D.I. Dynamic modal characteristics of
transverse vibrations of cantilevers of parabolic thickness",
Mech. Res. Commun., 36(3), pp. 391-404
(2009).
11. Laura, P.A.A., Gutierrez, R.H., and Rossi, R.E. Free
vibrations of beams of bilinearly varying thickness",
Ocean. Eng., 23(1), pp. 1-6 (1996).
12. Chaudhari, T.D. and Maiti, S.K. Modelling of transverse
vibration of beam of linearly variable depth with
edge crack", Eng. Fract. Mech., 63(4), pp. 425-445
(1999).
13. Ece, M.C., Aydogdu, M., and Taskin, V. Vibration of
a variable cross-section beam", Mech. Res. Commun.,
34(1), pp. 78-84 (2007).
14. Tanaka, M. and Bercin, A.N. Finite element modelling
of the coupled bending and torsional free vibration
of uniform beams with an arbitrary cross-section",
Appl. Math. Model., 21(6), pp. 339-344 (1997).
15. Malekzadeh, P. and Karami, G. A mixed dierential
quadrature and nite element free vibration and buckling
analysis of thick beams on two-parameter elastic
foundations", Appl. Math. Model., 32(7), pp. 1381-
1394 (2008).
16. Laura, P.A.A. and Valerga De Greco, B. Numerical
experiments on free and forced vibrations of beams of
non-uniform cross-section", J. Sound Vib., 120(3), pp.
587-596 (1998).
17. Zohoor, H. and Kakavand, F. Vibration of Euler-
Bernoulli and Timoshenko beams in large overall
motion on
ying support using nite element method",
Sci. Iran., B, 19(4), pp. 1105-1116 (2012).
18. Daeichi, M. and Ahmadian, M.T. Application of variational
iteration method to large vibration analysis of
slenderness beams considering mid-plane stretching",
Sci. Iran., B, 22(5), pp. 1911-1917 (2015).
19. Baghani, M., Asgarshamsi, A., and Goharkhaha, M.
Analytical solution for large amplitude vibrations of
microbeams actuated by an electro-static force", Sci.
Iran., B, 20(5), pp. 1499-1507 (2013).
20. Lee, S.Y., Ke, H.Y., and Kuo, Y.H. Analysis of nonuniform
beam vibration", J. Sound Vib., 142(1), pp.
15-29 (1990).
21. Chen, W.Q., Lu, C.F., and Bian Z.G. A mixed
method for bending and free vibration of beams resting
on a Pasternak elastic foundation", Appl. Math.
Model., 28(10), pp. 877-890 (2004).
22. Thambiratnam, D. and Zuge, Y. Free vibration analysis
of beams on elastic foundation", Comput. Struct.,
60(6), pp. 971-980 (1996).
23. Ding, Z. A general solution to vibrations of beams on
variable Winkler elastic foundation", Comput. Struct.,
47(1), pp. 83-90 (1993).
24. Eisenberger, M. Vibration frequencies for beams on
variable one and two-parameter elastic foundations",
J. Sound Vib., 176(5), pp. 577-584 (1994).
25. Eisenberger, M. and Clastornik, J. Vibrations and
buckling of a beam on a variable Winkler elastic foundation",
J. Sound Vib., 115(2), pp. 233-241 (1987).
26. Soldatos, K.P. and Selvadurai, A.P.S. Flexure of
beams resting on hyperbolic elastic foundations", Int.
J. Solids. Struct., 21(4), pp. 373-388 (1985).
27. Pradhan, S.C. and Murmu, T. Thermo-mechanical vibration
of FGM sandwich beam under variable elastic
foundations using dierential quadrature method", J.
Sound Vib., 321(1-2), pp. 342-362 (2009).
28. Payam, A.F. Sensitivity analysis of vibration modes
of rectangular cantilever beams immersed in
uid to
surface stiness variations", Sci. Iran., B, 20(4), pp.
1221-1227 (2013).
29. Mutman, U. and Coskun, S.B. Free vibration analysis
of non-uniform Euler beams on elastic foundation
via homotopy perturbation method", Int. J. Mech.
Aerosp. Ind. Mechatron. Eng., 7(7), pp. 432-437
(2013).
30. Ho, S.H. and Chen, C. Analysis of general elastically
end restrained non-uniform beams using dierential
transform", Appl. Math. Model., 22(4-5), pp. 219-234
(1998).
31. Catal, S. Solution of free vibration equations of
beam on elastic soil by using difb00erential transform
method", Appl. Math. Model., 32(9), pp. 1744-1757
(2008).
32. Ebrahimzadeh Hassanabadi, M., Nikkhoo, A., Vaseghi
Amiri, J., and Mehri, B. A new orthonormal polynomial
series expansion method in vibration analysis of
thin beams with non-uniform thickness", Appl. Math.
Model., 37(18-19), pp. 8543-8556 (2013).
33. Wang, J.T.-S. and Lin, C.-C. Dynamic analysis of
generally supported beams using Fourier series", J.
Sound Vib., 196(3), pp. 285-293 (1996).
34. Li, W.L. Free vibrations of beams with general
boundary conditions", J. Sound Vib., 237(4), pp. 709-
725 (2000).
S.E. Motaghian et al./Scientia Iranica, Transactions A: Civil Engineering 25 (2018) 2967{2979 2979
35. Motaghian, S.E., Mod, M., and Alanjari, P. Exact
solution to free vibration of beams partially supported
by an elastic foundation", Sci. Iran., A, 18(4), pp.
861-866 (2011).
36. Motaghian, S.E., Mod, M., and Akin J.E. On the
free vibration response of rectangular plates, partially
supported on elastic foundation", Appl. Math. Model.,
36(9), pp. 4473-4482 (2012).